Ocan 1.00

A device driver for the Intel 82527 CAN controller
February 2006

Alessandro Rubini
Rodolfo Giometti




Copyright © 2001 Ascensit S.p.A. (support@ascensit.com)
Copyright © 2002,2003,2005 Alessandro Rubini (rubini@linux.it)

Copyright © 2002 System SpA (info.electronics@system-group.it)

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.



Chapter 3: Installing the Package 1

The ocan Package

This manual documents the 1.00 release of the ocan device driver and associated user utilities.
The driver currently works on a range of 82527 devices. I chose not to use the device driver
by Arnaud Westenberg because I needed to run my device in a very short time, and his work
is much more complex so it needed time to study. Besides, I needed to have poll and complete
documentation.

Nowadays there are several CAN drivers, and this might now be the best choice for you.

1 Introduction

This driver allows user application to access registers and message objects in the 82527
CAN controller by Intel, as well controlling individual configuration items via an higher level
abstraction than bit operations on individual registers. This package is the result of changing a
2.2-only driver based on ‘/proc’ to a 2.2/2.4 driver based on ioctl.

Linux-2.2 was supported until 0.93 included, later versions added 2.6 support and removed
2.2 to keep the code simpler. The package reveals its age nonetheless, and if you read the code
you’ll find it’s not a good 2.6 programming example.

Device special files managed by this driver are both general purpose devices and special
purpose devices. The latter include device files bound to a specific message object and device
files use to access I/O ports or error information.

In addition to ioctl, some driver parameters can be read and written by reading and writing
files in /proc/sys/dev/ocan/.

2 Contributed Code

As of version 0.90, the ocan package includes two major external contributions, in the
‘contrib’ directory.

One is a patch by Philippe Gagnon, which adds support for a new hardware device and
changes data management in a few ways. The other is a port to RTAI by Seb James called
rtcan. The former is going to be integrated in the official ocan source code, but integration is
not as immediate as it can seem, as documentation must be produced and some design details
must be dealt with. On the other hand, the rtcan tarball is no more distributed with ocan and
the rtcan ‘README’ now points to the project’s home page. This will allow users to get the latest
version of the package.

Both contributions are worth looking at, though. More details are available in the ‘README’
file associated to each contributed package.

3 Installing the Package

3.1 Compiling the Package

To compile the driver and associated utilities, issue make. If needed, issue make install.
The driver is meant to work with both Linux-2.4 and Linux-2.6.

Please note that the installation part is the least tested corner of the package. Also, due to
kernel-version issues, you might want to check the Makefile and edit a few variables.

If the kernel source for the version you compile against is not installed as ‘/usr/src/linux/’,
please specify its location in the command line of ‘make’. For example, this is how I compile for
version 2.4 of the kernel:

make LINUX=/usr/src/linux-2.4

You can set LINUX in the environment, if you prefer that to the command line of ‘make’.

Installation of the package places it by default under ‘/usr/local’, while the module is
installed in ‘/1ib/modules/kernel-version/misc’. Under 2.6, installation is performed by
the kernel Makefile and the module will be ‘/1ib/modules/kernel-version/extra’. You can
specify DESTDIR and/or prefix. See the ‘Makefile’ for details.



Chapter 3: Installing the Package 2

3.2 Loading the Kernel Module

The ‘ocan_load’ script deals with loading the device driver. It looks for the module in the
current directory and then in the usual places. The script prints the location where the module
is found, so you can at least know what is going on. You are expected to edit the script to
configure permission and owner/group of the device files being created (by default anyone can
access the CAN controller).

I expect most users will simply run ‘. /ocan_load’ from the top-level directory of the package,
although it can be installed to ‘/usr/local’ along with other tools.

Any arguments that you pass to the ocan_load command line are passed to ‘insmod’. This
allows load-time configuration of internal variables and, if you feel so inclined, to specify the -f
option to force loading the module for a different kernel version (see ‘insmod’ documentation

You can pass a few command-line parameters to the device driver. The following table lists
all of them.

major
The integer parameter tells which major number should be used by this driver. By

default the major number is dynamically allocated (and you’ll most likely get 254
from such allocation).

base

The parameter lists the hardware addresses where CAN controllers are to be found.
Each item in the array defaults to 0 and you must explicitly state the base addresses
of your devices (either in I/O or in memory space). The array can host 8 base
addresses, as the driver can handle up to 8 CAN controllers.

irq
Like base, this lists the IRQ numbers, and all of them defaults to 0. In order for

one CAN controller to be used by the driver, both the base address and the IRQ
number must be set to non-zero values.

type
The type is an array of integer values, used to select one of the supported hardware
abstraction layers. Its use may be optional according to the hardware you run; the
driver can tell I/O-mapped controllers from memory-mapped controllers but some
base addresses can refer to more than one supported device. See Section 3.4 [Device
Types|, page 3.

remap_isaio
This parameter is needed to force use of memory-mapped access for ISA (PC104)
I/O based devices. This is not usually needed, but some port may not properly
define readb/writeb to be compatible with ISA devices plugged in the platform.

You don’t usually need to set this argument, but it is mandatory, for example, on
the TS-7200 embedded platform (EP9301 ARM CPU), where you need to specify
remap_1isaio=0x11e00000 to access any PC104 ocan device.

use_bottom_half
use_shared_irq
use_exclusive_irq
use_irq_stamps
use_complete_log
cpu_khz

These global parameters can be set both at load time and at run time though sysctl.
Such items are described in Section 8.1 [Global sysctl Parameters], page 10.
For example, this commands activates four CAN controllers: two of them on a PC-ECAN
ISA device (I/O mapped) and two of them on the Eurotech memory-mapped device:
./ocan_load type=3,3 base=0x380,0x382,0xd8000,0xd8100 irq=5,10,6,9

The following command, instead, loads the driver for a single MSMCAN device set up with
its factory defaults:



Chapter 4: Device Special Files 3

./ocan_load type=4 base=0x340 irqg=9

The following one enforces factory defaults for the Kontron device:

./ocan_load type=5 base=0x2000 irg=5

3.3 Unloading the Module

The ocan_unload script takes care of unloading the driver and cleaning up the /dev/ directory.

3.4 Device Types

The driver uses a simple hardware abstraction layer in order to support different device types.
Each type is identified by a number; a type of 0 (the default) specifies automatic detection of
the device type. Automatic detection works by asking to each supported type whether or not
the base address specified can be its own. If more than one device type replies affirmatively,
the driver refuses to load and prints an error message. Thus, autodetection can’ work with ISA
I/O-based devices, since the package supports several such device types.

Currently, the following device types are supported:

1: isamem

2: isa-io

3: pcecan

4: msmcan

5: isa-dio

6: gea

This is a memory-mapped mounting of the 527 chip, in the ISA I/O memory space.
The base address for this device type must be a multiple of 256 and must be in
the range from 0xa0000 to 0xef000. The type number, 1, has been chosen because
it resembles the I of "isamem". These devices include Eurotech motherboards,
Eurotech CAN cards and their COM1270 (one Ethernet, 8 serial ports, two 527
controllers). I thank them for donating hardware samples.

This is a generic driver for I/O mapped devices in the ISA address space. If your
device uses an address register at the base I/O port and a data port at port base+1,
then you can use this driver. I currently have no such device to test.

The PC-ECAN device supports up to two 527 controllers mapped in I/O memory,
using ISA. Each pair uses a range of 8 I/O ports and uses an address-register/data-
register pair to access 1527 registers and a separate port to reset one or both con-
trollers. This driver is like isa-i0 above, with additional support for the reset bits.
The type number, 3, resembles a flipped E (as in ECAN).

The MSMCAN device is manufactured by Digital Logic AG. It’s an I/O mapped
device with the address register at port base+1 and the data register at port base. My
specimen of the device has been contributed by Clay Barclay of Harris Corporation.

This back-end supports devices whose registers are mapped to a continuous range
of 256 I/O ports (the name stands for ISA direct I/O). This applies for example to
the MOPS devices built by Kontron, who sent me a complimentary device.

The PC/104 board developed by GEA-Automotive is similar to PC-ECAN, but uses
16 I/O ports. Once again, the number, 6, is chosen because is resembles G as in
GEA. This device, though, has extra functionalities besides carrying one or two 527
chips. See Section 8.2 [GEA sysctl Files], page 11.

8: TQM8xxL

TQ manufactures embedded PowerPC modules with 82527 devices on-board. This
device type supports such modules (code contributed by Wolfgang Grandegger).
This device type is only compiled in if you build for the PowerPC platform (while
the others are currently only compiled in if you are not compiling for PowerPC).



Chapter 5: Device Methods 4

4 Device Special Files

The script ‘ocan_load’ creates ocan special files within the directory ‘/dev/ocan’. The
various 82527 controllers are identified by a lowercase letters, starting from a. The following
device files are created for the first controller being used by the driver:

/dev/ocan/a
The general entry point to the controller. While read and write can’t be used on this
device, it implements all the ioct] commands and poll (select). The ioct] commands
use to read and write CAN messages behave like the read and write system calls,
in that they respect 0_NONBLOCK and 0_SYNC.

/dev/ocan/al .. /dev/ocan/alb
Specific entry points to access one of the 82527 message buffers. These files support
read and write, but the result of such operations is undefined unless the message
object has first been configured. About the exact semantics of read and write see
below, in Chapter 5 [Device Methods], page 4. File ‘a15’ is read-only. Warning: not
yet implemented.

/dev/ocan/a-error
The error file is used to report errors to user space. The first read after opening
the file returns the current status byte. Successive reads will block until a status
interrupt notifies the driver about a status-change event. Each read returns one byte,
the current status byte. The application can use select/poll to know when read
would or would not block. See Section 10.2 [Demonstrating Error Management],
page 17.

/dev/ocan/a-iol /dev/ocan/a-io2

The devices access the two 8-bit I/O ports. The ports are called 1 and 2 (instead
of 0 and 1) to be consistent with Intel documentation about their CAN controller.
Each read() or write() system call will transfer a single byte of information from/to
the hardware device. Configuration for the ports (i.e., whether each bit is set up as
input or output) is performed via ioctl(). The implementation of ioctl is shared by
all devices, and offers commands for direct input/output too (see Chapter 6 [Ioctl],
page 5); these devices are therefore mainly meant for shell scripting. The hardware
implementation for the specific device may or may not force a default at hardware
initialization and reset; this currently only happens for the GEA device.

5 Device Methods

A device driver is plugged in the system by means of a table of “device operations” (or
methods) that it takes care of. The implementation (or lack of) used in the ocan grabber is
described below.
open

When open is first called for a device, its interrupt line is enabled. The method also
makes a few consistency checks (for example, ‘/dev/ocan/al5’ cannot be opened
for writing as the message object is receive-only at hardware level). Single-open
behavior will be implemented for message-object device files so different processes
can’t make a mess of their data.

Note that nothing is initialized at open time. This specific behavior has been chosen
to allow configuring the controller via ‘ocan_control’ (see Section 9.1 [ocan_control],
page 12) and then reading and writing from a different process.

release

When a file descriptor is last closed, any message object owned by that file descriptor
is freed, even if it is currently transmitting. This means that you should not close a
file before your transmission is over; the behavior allows recovery of message objects
when transmission can’t be performed due to bus errors and no IRQ is reported for
the transmitting messages. Also, the release method disables interrupt reporting
when a CAN controller is closed for the last time. No reset is performed, for the
same reason why open doesn’t initialize the device.



Chapter 6: Ioctl 5

read

The read system call should be implemented for special files that refer to a specific
message object, but it currently is not.

The system call is available for error management and digital I/O, though.

write

The write system call should be implemented for special files that refer to a specific
message object but it currently is not.

The system call is implemented for digital I/O, though.

poll

The poll method is the back-end of both poll and select. It is implemented and it
can be associated with either read/write or ioctl. When a file calls poll, the list of
message objects is scanned and if the file owns more than one message object, the
result will be inclusive of all devices. The application developer is strongly invited
to only access one message object from each open file. A future enhancement will
restrict special files that refer to a specific message object to only work with that
message object (even if ioct] commands allow to specify which message object to
use), in order to get better performance out of poll.

ioctl
Most of the operations that can be performed on the device are available via ioctl
The list of ioct] commands is available in Chapter 6 [Ioctl], page 5.

fasync

The method is not currently implemented but I plan to add it.

IlIseek
Returns ESPIPE, since seeking a CAN device is not possible.

flush
fsync

The flush method is called when a file is closed (even if not the last close, while
release is only called on last close). fsync is the back-end of the fsync system call.
Both will be implemented (and will do the same) but currently aren’t.

mmap

Not implemented.

6 loctl

The ioctl method is used to act on the device, both at low level (i.e., reading and writing
registers) and at higher level (i.e., reading and writing messages and configuration parameters
ignoring the bit position on the physical device).

I implemented no kind of protection on the device: you must protect it using the normal
Unix permission/owner techniques (however, by default the devices are open to everyone, feel
free to change ocan_load if needed). It might make sense to implement some access restriction
in the device, but I'm not sure about it.

The following list describes all the commands currently implemented in the driver and the
ones I plan to implement. The type of the third argument (if any) is specified in parenthesis. All
of the commands can also be issued by means of the ocan_control application (see Section 9.1
[ocan_control], page 12).



Chapter 6: Ioctl 6

6.1 Low-level Commands

OCAN_IOCRESET (no third argument)
The command can be used to reset the CAN controller. It uses the h_reset method of
the hardware abstraction layer, and fails if that method fails. Thus, if no hardware
reset is available EOPNOTSUPP is returned. Hardware reset does not imply software
reset (IOCSOFTRESET).

OCAN_IOCSOFTRESET (no third argument)
The command re-registers the interrupt handler and asks the driver to do software
reset. Unregistering and re-registering the interrupt handler can help with some
very rare hardware problem, although the same effect can be achived by closing
and reopening the device, that is inpractical when several processes are using the
device at the same time. Then, the initialization sequence for the CAN controller
is called and all flags and buffers associated to device objects are reset. If any
message object is marked as busy, it is released. An object can be stuck busy if an
application requested transmission but a fatal error happened and no interrupt has
been reported for the successful transmission (still, you can know about errors by
reading the error device). Software reset does not imply hardware reset (I0CRESET).

OCAN_IOCREADREG (struct ocan_reg * argument)

OCAN_IOCWRITEREG (struct ocan_reg * argument)
The commands can be used to read and write individual device registers. The
structure struct ocan_reg has two 8-bit fields: reg and val. The user must fill
one or both of the fields; writing has no effect on the data structure, while reading
sets val.

OCAN_IOCREADMULTI (struct ocan_multireg * argument)

OCAN_IOCWRITEMULTI (struct ocan_multireg * argument)
To avoid excessive system-call overhead, these commands can be used to read and
write multiple consecutive registers up to a maximum of 0CAN_MULTIREG_MAX, cur-
rently 16. Please note that you can’t set OCAN_MULTIREG_MAX to arbitrary values
and recompile; you’ll also need to check IOC_BUFSIZE in the implementation of ioctl.

OCAN_IOCREADALL (struct ocan_allregs * argument)
This commands reads all 256 registers. The third argument can be a simple pointer
to an area of 256 bytes, even though I had to define a data structure in order to
define the command.

6.2 Higher-level Commands

OCAN_IOCGETMASKS (struct ocan_masks * argument)

OCAN_IOCSETMASKS (struct ocan_masks * argument)
The commands are used to read and write the two global masks and the message-15
mask of the CAN controller. The masks are 16 bits or 32 bits long, and the least
significant bits are ignored (refer to the 82527 data sheet for details about mask
layout).

OCAN_IOCGETTIMES (struct ocan_times * argument)

OCAN_IOCSETTIMES (struct ocan_times * argument)
The commands are used to read and write the current timing configuration of the
CAN controller. The fields of the data structure include the various clock pre-scalers,
clock output control and bit length control. Arguments in the data structure are as
wide as the bit fields in 82527 registers, but shifted to the least significant bits. If
any higher bit is set when changing device configuration the result is undefined.

OCAN_IOCGETBUSCONF (struct ocan_reg * argument)

OCAN_IOCSETBUSCONF (struct ocan_reg * argument)
The commands read and write the bus configuration register (0x2f) of the CAN
controller. Strictly speaking, a IOCREADREG call could simply be used in place of
I0CGETBUSCONF; however to change register 0x2f you first need to set the "change
configuration enable" bit, so both commands are implemented for symmetry. Only
the val field of struct ocan_reg is used (the reg field is ignored and is not changed).



Chapter 6: Ioctl 7

OCAN_IOCWRITEMSG (struct ocan_msg * argument)

OCAN_IOCSETUPMSG (struct ocan_msg * argument)

OCAN_IOCTXMSG (unsigned long argument)
The IOCWRITEMSG command configures a message and transmits it, while
IOCSETUPMSG and IOCTXMSG allow the task to be slit in two steps, since setting
up a message object is a much longer task than actual transmission. Moreover, a
message could be set up once and transmitted several times. All configuration
information is hosted in struct ocan_msg, but you only need to pass the
message-object number in order to transmit a configured message.

Both configuring a message and transmitting it are potentially blocking calls, to
prevent any interference with an already ongoing transmission. Although the delay
will be small, as no more than one hardware transmission can be pending, you can
use a non-blocking file descriptor and rely on EAGAIN to be returned. The message
object can be busy only due to a previous TXMSG or WRITEMSG issued through the
same file descriptor.

For details about the transmission mechanism, see Chapter 7 [Sending and Receiving
Packets], page 8.

OCAN_IOCRXMSG (struct ocan_msg * argument)
The command receives a message from the specified message objects. The call is
blocking if no message has already been received, unless 0_NONBLOCK is set for the
current file. When the command blocks if behaves like a blocking read.

For details about the transmission mechanism, see Chapter 7 [Sending and Receiving
Packets], page 8.

OCAN_IOCPEEKMSG (struct ocan_msg * argument)

The command peeks in the queue of received messages and extracts one with the
specified identifiers. It can only be used on a message object opened for reading
and does never block (since it isn’t easy to match this with select). The caller must
fill the id field of the data structure and the I527_XTD bit in the config field; the
driver will return a packet matching id and XTD, or -1 if no matching packet is
there (with errno set to EAGAIN). The packet is removed from the queue, unless
OCAN_MSGFLAG_PEEKONLY is set.

OCAN_IOCRELEASEMSG (unsigned long argument)
The command is used to declare the current process (actually, the current file) is
not interested in the message object any more. No more packets will be received by
this message after it is released and before another file declares interest in it.

For details about message ownership, see Section 7.1 [Message Ownership|, page 8.

OCAN_IOCWRITEQ (struct ocan_msg * argument)
The command enqueues messages (instead of writing one of them to hardware reg-
isters like IOCWRITEMSG does). Whenever the queue is full, the process is put asleep
(unless it is non-blocking, in that case EAGAIN is returned). Sleeping processes are
awaken when at least half of the queue is empty. Technical details about how locking
and sleeping is performed are available in the text file ‘README.1locks’ within the
source code.

OCAN_IOCGIRQCOUNT (unsigned long *argument)
The command returns to user space the number of interrupts received from this
driver after it has been loaded. If the interrupt handler is shared, only valid
interrupts for this device are reported. This is therefore different from reading
‘/proc/interrupts’, and sometimes useful information.

OCAN_IOCREQSIGNAL (unsigned long * argument)
The command requests signal notification on error interrupts. The argument points
to the signal that the current process wants to receive on error. If the signal is 0,
then the current process is removed from the list of processes being notified. If the
signal specified is too high, EINVAL is returned; if the table of processes requesting
a signal is full, EBUSY is returned. The default length of the table is 4 processes.

When the file is last closed, signal notification is removed. Please note that if signal
notification is activated and then the file is passed to a child via fork, the signal will



Chapter 7: Sending and Receiving Packets 8

still be delivered to the parent process, as the pid is recorded when ioctl is invoked.
This might be a security issue, but it is not because ioctl can only be invoked by
the superuser.

OCAN_IOCINPUT (struct ocan_reg * argument)

OCAN_IOCOUTPUT (struct ocan_reg * argument)

OCAN_IOCIOCFG (struct ocan_reg * argument)
The three commands are used to read or write an 8-bit register in the 82527 con-
troller, and are functionally equivalent to IOCREADREG and I0CWRITEREG. The com-
mands, therefore, only exist to ease the user (who can avoid using register numbers
to act on I/O ports). The reg field of the structure must be either 1 or 2. TOCINPUT
fills the val field, the other two commands copy the val field to hardware registers.

Configuring an I/O port means setting what bits are used as input and what bits
are used as output. Bits set to 1 configure the pin as output, bits set to 0 configure
it as input.

7 Sending and Receiving Packets

Transmission and reception of packets is performed via either ioctl or read/write (although
the latter method is not implemented in early versions of the driver).

Independently of the interface chosen by the application, internally everything is implemented
by assigning ownership of message objects to the file using them and by transferring information
using the ocan_msg data structure.

7.1 Message Ownership

In order for a message object to be used in transferring data packets, it must be owned by a
file. This choice allows control of whether a message object is configured or not, and some form
of access control for message objects. Since message ownership is associated to the file and not
to the process that opened it, two clones of the same file share their ownership (this happens
when dup(2) or fork(2) are used). Similarly, ownership is preserved across fork(2)/exec(2).

A file becomes the owner of a message object if the device special file being opened is specific
to a message object (for example, ‘/dev/ocan/a4’), or when one of IOCSETUPMSG or IOCWRITEMSG
is issued via ioctl (in this case, independently of the device file being opened). A file trying to
access a message object owned by another file receives an error of EBUSY (either on open(2) or
on ioctl(2)).

When a file is the owner of a message object it should configure it before using it for message
transmission (i.e., it should set a CAN identifier, choose whether to use standard or extended
id’s, select whether remote frames must be used or not). However, configuring the file is not
mandatory.

Only the owner of a message object can send or receive files through that object. Transmission
and reception can both be performed via ioctl, while a file that opened a message-specific device
(‘/dev/ocan/b12’ or similar can only read or write until the file is closed. To enforce that,
open (0_RDWR) is not allowed on such device files.

If a file tries to issue TOCTXMSG or IOCRXMSG without being the owner of the message object,
EPERM (“Operation not permitted”) is returned. Neither command checks message flags

Ownership is released either by closing the file or by issuing ITOCRELEASEMSG. Please note that
in either case the message object is released even if it is currently transmitting, so you should use
IOCRELEASEMSG (and close) with care. A message is released even if it is transmitting in order
to recover it from the “hardware busy” status in case errors happen (i.e., when transmission was
requested but no interrupt reported it as successfully completed).

The rationale behind this design is in allowing use by either compiled applications or shell
scripts while preventing concurrent access. Use by a shell script means that configuration of the
message object and packet transfer must be performed by different processes. Thus, message
configuration (id, extended flag, remote flag) survives a change in message ownership.



Chapter 7: Sending and Receiving Packets 9

7.2 Use of ocan_msg

This section describes how the fields of struct ocan_msg are used in the device driver and
ioct] commands. The structure is defined in ‘ocan.h’.

In the following description, IOCWRITEMSG does not appear because it behaves exactly like
IOCSETUPMSG.

__u32 id
The CAN identifier for this message object. The user must set this field in
IOCSETUPMSG, the driver returns it in TIOCRXMSG. The field is laid out like 82527
registers: for standard messages only the top 11 bits are meaningful, for extended
messages only the top 29 bits are meaningful.

__u8 msgobj
The number of the message object. The field must be set by the application both
in I0OCSETUPMSG and IOCRXMSG.

__u8 flags

Either 0CAN_MSGFLAG_READ or OCAN_MSGFLAG_WRITE. It must be O0CAN_MSGFLAG_
WRITE when calling TOCWRITEMSG. The driver sets this field to 0CAN_MSGFLAG_READ
when a packet is received (and returned to user space).

The flag 0CAN_MSGFLAG_PEEKONLY is used by IOCPEEKMSG to peek in the queue of
received messages without removing data from the queue itself.

__ul6 control
Currently unused. Still, it’s useful as alignment.

__u8 datal[8]
Data bytes. They must be filled before calling IOCSETUPMSG if the OCAN_MSGFLAG_
WRITE is set. The driver fills it on IOCRXMSG.

__u8 config
This field is laid out like the config hardware register associated to the message
object. When IOCSETUPMSG is called, the driver only uses the extended bit (since
data length is taken from the dlc field and the direction bit is derived from the flags
field. After TOCRXMSG all bits of the field are valid.

__u8dlc
Data length counter. The field must be set by the application before calling
I0OCSETUPMSG with OCAN_MSGFLAG_WRITE and is ignored when setting up a mes-
sage for reading. When receiving a message the driver sets it to the number of data
bytes received (also available from the high nibble of config.

__ul6 error

A bit-mask of error flags. The flag 0CAN_ERROR_MSGLST is set for a message when the
“message lost” flag is set in hardware; this means a message has been lost before this
one. The flag OCAN_ERROR_OVRFLV is set in a message when the following message
has been discarded by software because the internal buffer overflowed; the number
of pending messages is defined in ‘ocan.h’ as 0CAN_BUFSIZE, and it’s currently not
configurable after compilation.

7.3 Use of ONONBLOCK and O_SYNC

The driver honors the 0_NONBLOCK file flag when reading a message.

If no message is available, the ioctl or read system calls will either block or return EAGAIN
according to whether or not 0_NONBLOCK is set in the file flags.

When no message is available, the process can use the select or poll system calls to wait for
a message (the calls work whether or not the file is non-blocking, just like they work with read).

If the file that calls select or poll owns more than one message object, the file descriptor will
be reported as readable when at least one of the message objects has new data. Thus, if you
use select or poll while owning more than one buffer object you’ll need to set 0_NONBLOCK and



Chapter 8: /proc/sys/dev/ocan 10

try to receive from the various objects you own. The suggested approach to read from several
message objects is using a different file descriptor for each of them.

0_SYNC is not currently supported but will be.

8 /proc/sys/dev/ocan

The sysctl interface is used for setting configuration variables for run-time behaviour and for
device-specific extended features. The latter is currently only used for GEA devices.

Later versions will allow reading and writing message identifiers and masks vie ‘/proc/sys’,
but this is currently not supported.

All files in ‘/proc/sys’ can be read and written from user space, but you need superuser
privileges to change configuration variables.

8.1 Global Configuration

The following global parameters can be read and written via either ‘/proc’ or sysctl. For the
latter tool, magic numbers appear in ‘ocan.h’.

All values are boolean, and can’t be set to anything but 0 or 1. When the values are modified,
they have immediate effect unless otherwise noted.

Default values are compiled-in, and match the behaviour of previous releases of ocan, but
new command line parameters for insmod have been introduced so you can change the default
values without passing through sysct!l or ‘/proc’.

In the following table, the ‘/proc’ name appears together with the command line parameter
in parenthesis.

bh (use_bottom_half)

Enable split interrupt handling (i.e., use of bottom halves, whence the name. This is
set by default for the 1386 platform, unset for other platforms. If bottom halves are
disabled, all interrupt processing occurs in interrupt context, without giving control
back to Linux after the interrupt source is acknowledged. You might want to disable
bottom halves if you need to receive several back-to-back packets, as bottom-half
processing can be slightly delayed from hardware interrupt management if other
asynchronous events are pending or other interrupts are received.

Since most supported boards are ISA (PC104) devices, the bottom-half code was
designed with them in mind and proved not to work with level-triggered interrupts,
that’s why it’s disabled for non-x86 platforms. This misbehaviour is a known bug
and will be fixed as time permits.

shirq (use_shared_irq)
Register a shared interrupt handler. This is set by default and is used when the
device is first opened, as the interrupt line is released back to Linux when the device
is closed by all processes that were using it. Usually registering a shared handler
is the right thing to do, because a shared interrupt is better than no interrupt at
all. Sometimes, though, you might want to prevent a shared handler from being
installed.

exclirq (use_exclusive_irq)
Register an exclusive interrupt handler. This is clear by default and is used when
the device is first opened, as the interrupt line is released back to Linux when the
device is closed by all processes that were using it. An “exclusive” interrupt handler
is one that keeps all other interrupts disabled while running (i.e., it uses the SA_
INTERRUPT flag when calling request_irq). You might want to keep other interrupts
disabled if you are very concerned about speed in CAN processing.

irqstamp (use_irq_stamps)
Request to print time stamps for hardware interrupts and bottom half processing
(not set by default). When stamping is activated, the driver will print the delay,
in microseconds, of bottom-half processing from the hardware interrupt as well as



Chapter 9: User Space Tools 11

the delay of each hardware interrupt from the previous one. This feature uses the
“time stamp counter” (TSC) found on some CPU cores and the CPU frequency set
forth by the user (see below) to convert the delays into microseconds. If you run
under 2.2, no cpu_khz exists and the driver performs no conversion at all, so delays
are printed as raw TSC counts. If your CPU has not time stamp counter all delays
will appear as 0. If the counter of your CPU runs at a different pace than the CPU
core, you'll need to look for cpu_khz in ocan code and fix the calculation (this only
happens with some non-x86 architectures).

buslog (use_complete_log)
This parameter should enable complete logging of transmitted /received packets, but
is not currently implemented.

cpu_kHz (cpu_kHz)

The frequency of the CPU, used in making time calculations using the time
stamp counter. While the kernel has a global variable called cpu_khz (lower-
case), that value is not exported to modules, so ocan need to know otherwise.
The user can specify the CPU frequency at module load time or by writing to
‘/proc/sys/dev/ocan/cpu_kHz'. Please note that you can write any number in
there, as long as it’s greater than 10000. Time measures, enabled by irqstamp as
described above, will change according to the assumed CPU frequency. The default
value for core frequency, if not specified, is 100MHz.

8.2 GEA sysctl Files

The device manufactured by GEA Automotive supports an internal 16-bit counter (using
leading edges of one of the digital inputs) and a timer interrupt, that fires with a configurable
period, multiple of a millisecond.

If you install more than one card (for example to have more than two CAN busses), you’ll
still only access the timer and counter on the first card. Similarly, there’s not support to actually
use the timer as a timing source for user-space processes, something that might be very useful
(for example implementing something on the lines of ‘/dev/rtc’, but exploiting the multiple-of-
a-millisecond time interval offered here.

Both problems will be solved as soon as I implement device-specific minor numbers (so you’ll
be able to use poll and ioctl with specific commands, blocking and non-blocking I/O, and so
on).

Currently, the following three files implement the timer and the counter functionality, all of
three live in ‘/proc/sys/dev/ocan’ and can be accessed either via text I/O and via the sysctl
system call. T’ll add a demonstration program to use the sysctl binary interface.

counter

The counter is a 32-bit number. The hardware counter is a read-only 16-bit value,
but it’s overflow interrupt is used to extend the width of the count. The content of
this file is reset to 0 at module load time.

The counter is not reset when ‘/dev/ocan/a’ is opened for the first time, since its
overflow interrupt will be handled even when the device is not in use. Applications
will therefore need to keep track of the initial value of ‘counter’.

The ‘counter’ file is read-only
timerstep

The delay between timer interrupts. The value represents the number of milliseconds
between successive timer interrupts. A value of 0 disables the interrupt altogether;
any value in the range 1-255 activates the interrupt. The file is read-write.

timer

The number of timer interrupts since the module has been loaded. The values is not
reset at device open, since its interrupt are handled even when the CAN device is
not in use. Thus, applications using the timer will need to keep track of the initial
value of the timer. Please note also that no locking or protection is implemented on
the value of ‘timerstep’: any root process can change the value and no application
gets notified.



Chapter 9: User Space Tools 12

9 User Space Tools

The package includes a few user-space programs to act on the device.

9.1 ocan_control

‘ocan_control’ is a front-end to the ioctl system call. In general, all implemented ioctl
commands are also available from ‘ocan_control’. The program reads commands from either
the command line or standard input.

By default the program acts on ‘/dev/ocan/a’, but you can specify a device pathname as
either the first or last command line argument. Alternatively, you can set OCANDEVICE in the
environment to select a default device name. An additional argument of -t requires terse (i.e.,
non-verbose) operation; due to the simple-minded implementation, the option must follow the
device name if you chose to specify it as the first (rather than last) argument, passing arguments
with the option before the device name won’t work as expected. If the only remaining argument
is -, then the commands to issue are read from standard input, otherwise the commands are
read from the command line.

If you call the program without arguments, it prints the list of supported command. Each
command is invoked followed by a number of integer arguments (read as "%i", so hex numbers
can be passed using Ox as prefix).

fino), ./ocan_control

Use: ./ocan_control [command [arg] ...]

The device used is /dev/ocan/a, or $0CANDEVICE
Commands are:

reset (OCAN_IOCRESET » 0 numeric args)
softreset (OCAN_IOCSOFTRESET , O numeric args)
readreg (OCAN_IOCREADREG » 1 numeric arg)
writereg (OCAN_IOCWRITEREG » 2 numeric args)
readmulti (OCAN_IOCREADMULTI , 2 numeric args)
writemulti (OCAN_IOCWRITEMULTI , 3 to 18 numeric args)
readall (OCAN_IOCREADALL , 0 numeric args)
getmasks (OCAN_IOCGETMASKS » O numeric args)
setmasks (OCAN_IOCSETMASKS » 3 numeric args)
gettimes (OCAN_IOCGETTIMES » 0 numeric args)
settimes (OCAN_IOCSETTIMES » 9 numeric args)
set3times (OCAN_IOCSETTIMES » 3 numeric args)
getbusc (OCAN_IOCGETBUSCONF , O numeric args)
setbusc (OCAN_IOCSETBUSCONF , 1 numeric arg)
setupmsg (OCAN_IOCSETUPMSG » 2 to 10 numeric args)
writemsg (OCAN_IOCWRITEMSG , 3 to 10 numeric args)
writeq (DCAN_IOCWRITEQR » 3 to 10 numeric args)
txmsg (OCAN_IOCTXMSG » 1 numeric arg)
rxmsg (OCAN_IOCRXMSG » 1 numeric arg)
peekmsg (OCAN_IOCPEEKMSG » 2 to 3 numeric args)
input (OCAN_IOCINPUT » 1 numeric arg)
output (0OCAN_IOCOUTPUT » 2 numeric args)
iocfg (OCAN_IOCIOCFG » 2 numeric args)
releasemsg (OCAN_IOCRXMSG » 1 numeric arg)

Most of the textual commands map directly to the ioct]l commands, but not all of them.
Moreover, the help command is available: it prints the same message as show above unless
followed by a command name, in that case it prints more detailed information about the specific
command.

The getmasks and setmasks use a different field order than the fields in the data structure
(since the data structure is ordered to maximize alignment, and the textual command is in
logical order). The three masks are, in order, standard global mask, extended global mask,
message-15 mask.



Chapter 9: User Space Tools 13

The gettimes and settimes use their numeric arguments in the same order; to know their
order the user is invited to use gettimes first. The simplified set3times commands only sets
the baud rate pre-scaler, the TSEG1 and the TSEG2 values, in this order, preserving the other
timing values. This allows to set the bit rate without affecting clock-out timings and internal
clocks.

A sample session with the command looks like this:

fino.root# ./ocan_control readreg 0 readmulti O 3 readall

ioctl("/dev/ocan/a", OCAN_IOCREADREG, ...) = 0x00 = 0x0a (ret 0)
ioctl("/dev/ocan/a", OCAN_IOCREADMULTI, ...) = 0x00-0x03 = 0a 00 01 01 (ret 0)
ioctl("/dev/ocan/a", OCAN_IOCREADALL, ...) = all registers:

0a 00 01 01 00 00 ff ff f£f ff ff £8 £f ff ff £8

55 55 01 00 00 00 00 00 00 00 00 00 00 00 00 30

55 556 02 00 00 00 00 OO 80 00 OO OO 00 00 00 00

55 556 03 00 00 00 00 OO 00 00 00 OO 00 00 00 00

55 55 04 00 00 00 00 OO 00 OO 00 OO 00 00 00 c6
55 55 05 00 00 00 00 OO 00 OO0 00 OO 00 00 20 00
55 55 06 00 00 00 00 OO 00 00 00 OO0 00 00 00 ff
55 55 07 00 00 00 00 OO 00 00 00 OO0 00 00 00 ff

55 55 08 00 00 00 00 OO 00 00 00 00 00 00 00 ff
55 55 09 00 00 00 00 OO 00 00 00 OO 00 00 00 00
55 55 0a 00 00 00 00 OO 00 OO0 00 OO 00 00 00 03
55 55 0b 00 00 00 00 OO 00 00 00 OO 00 00 00 00

55 55 0c 00 00 00 00 OO 00 00 00 OO 00 00 00 O1
55 55 0d 00 00 00 00 40 00 00 00 OO0 00 00 00 00
55 55 0e 00 00 00 00 OO 0O OO0 OO0 OO 00 00 00 O1
55 55 0f 00 00 00 00 OO 00 00 OO0 OO 00 00 00 £ff
(ret 0)

The following example shows use of the command from standard input:

fino.root# ./ocan_control -
readreg O
ioctl("/dev/ocan/a", OCAN_IOCREADREG, ...) = 0x00 = OxOa (ret 0)
getmasks
gettimes
ioctl("/dev/ocan/a", OCAN_IOCGETTIMES, ...)
CLKOUTDIV, CLKOUTSL = 0 3
SPL, SJW =10
BRP, TSEG1, TSEG2 = 0 6 4

(ret 0)
set3times 7 3 4
ioctl("/dev/ocan/a", OCAN_IOCSETTIMES, ...)
help setupmsg
Command "setupmsg":

2 to 10 numeric arguments
Use: "setupmsg <msgnum> <id> [<databyte> ...]"

setupmsg 1 0x3321 0x10 O0x3f 0x48
ioctl("/dev/ocan/a", OCAN_IOCSETUPMSG, ...) = (ret 0)
txmsg 1
ioctl("/dev/ocan/a", OCAN_IOCTXMSG, ...) = (ret 0)

Note that both setupmsg and txmsg are able to configure both standard and extended
identifiers. The identifier is considered a 32-bit value; if all the top 16 bits are zero, then it
is considered a standard identifier, and only the top 11 bits are meaningful; if at least one
of the top 16 bits is set, then it is considered an extended identifier and the top 29 bits are
meaningful. This is implemented by properly setting the I527_XTD flag in the control register

DSC, DMC = 0 O

(ret 0)



Chapter 10: Demonstration Programs 14

and by shifting left any identifier whose top 16 bits are zero, to match the behavior of the id
field of struct ocan_msg only uses the most significant bits. See Section 7.2 [Use of ocan_msg],
page 9.

The behavior of rxmsg matches that of txmsg: extended identifiers are reported as 32-bit
numbers (whose top 29 bits are meaningful) and standard identifiers are reported as 16-bit
numbers (whose top 11 bits are meaningful). The contents of the error bit mask are reported
in square brackets, if any.

rxmsg 1

from <3e00>: e0 ee e2 e3 e4 eb eb6 e7
rxmsg 1

from <3e00>: e0 el e2 e3 [error: OVERFLOW]

The peekmsg command receives as arguments the message object and the identifier to look
for. If the third argument is there and it’s not zero, then the PEEKONLY flag will be set, so
returned data won’t be removed from the queue of received packets.

10 Demonstration Programs

The directory ‘demo’ includes a few demonstration programs, whose code is placed in the
public domain (as far as law permits).

Warning: Contrary to previous versions, the demonstration programs do not reconfigure the
bus according to compile-time configuration. Such a feature was handy in early versions, but
now that devices declare their preferred configuration, it isn’t needed any more.

10.1 Demonstrating Communication

This release includes a simple programs to demonstrate communication; some of them are
stand-alone programs and some are pairs aimed to be run on different nodes of the bus.

10.1.1 Stand-alone Demo Programs

The stand-alone demonstration programs are very simple. They are placed in the public
domain, since their building blocks are just basic use of the data structures and ioctl commands.

The following programs are included in the distribution:

demo-rxmsg

The program takes two arguments, the message-object number to use and the identi-
fier used in receiving messages. It will set up bus configuration and timings according
to the default values and will loop forever waiting for CAN messages. Every message
received is dumped to stdout. If the identifier specified is less than 16-bit wide, it
is considered a standard identifier (whose top 11 bits are meaningful), if any of the
top 16 bits is set then it is considered an extended identifier, and the top 29 bits are
meaningful. The same convention is used to dump identifiers of received data, and
is consistent with commands in ocan_control. Similarly, error flags are reported like
ocan_control does in rxmsg. See Section 9.1 [ocan_control], page 12.

demo-select
The program behaves exactly like demo-rxmsg, but it uses select to wait for a
message instead of blocking on ioctl. The same conventions as for demo-rxmsg
above apply to the id argument and to the output format.

demo-dump
The program configures message 15 to receive every message that travels on the bus
and then prints to stdout all received messages, using the same textual representa-
tion as demo-rxmsg uses. This can be useful to diagnose ongoing communication on
the bus. The “-e” option tells it to listen to extended messages instead of standard
ones; the “-d” option asks to report time differences across packets instead of the
absolute time; the “~i interface” option asks to dump packets that are received in



Chapter 10: Demonstration Programs 15

that network interface too. This last option is useful if you are interested in inter-
dependencies between CAN events and Ethernet events. No filtering of Ethernet
packets is implemented; for the representation used see the source code.

Time stamps are reported using either get_cycles (if the underlying CPU supports
it) or gettimeofday. If you want to use gettimeofday even on a CPU that offers a
TSC, you can set FORCETV in the environment. No conversion from TSC times to
absolute time is performed by the sample tool.

All three programs accept as extra argument the device name to use, as either first of last
command-line argument. Additionally, if the -n option is specified before the message number,
it is ignored (in previous versions it prevented reconfiguration of the bus, but this is now the
default).

The programs do not use remote frames. Such feature will be added as soon as the driver
supports it.

The following screen dump shows use of demo-select.

fino.root# demo/demo-select 1 0x1100
configuring msg 1 for standard id 0x1100
waiting for data

from <1100>: 01 02 03 04

from <1220>: 04 05 06

Before running the program, the global mask for standard messages was set to 0x£0000, thus
allowing the program to receive messages from different sources. The messages shown above
were sent by issuing the following commands to ocan_control:

setupmsg 1 0x1100 1 2 3 4
setupmsg 2 0x1200 4 5 6
txmsg 1

txmsg 2

Note that the identifiers are only 11 or 29 bits wide, so low bits are discarded; this may lead
to differences between what you believe to send and what you receive (for example, and id of
0x1111 is received as 0x1100).

The following example shows exchange of an extended message. The sender is issuing com-
mands to ocan_control and the receiver is started before the message is actually sent.

setupmsg 1 0x30001230 2 3 4 5
= 0 (0x0)

txmsg 1

= 0 (0x0)

fino.root# demo/demo-select 14 0x30000000
configuring msg 14 for extended id 0x30000000
waiting for data

from <30001230>: 02 03 04 05

10.1.2 Demo Program Pairs

Two program pairs are provided in the distribution. Unlike what happens for stand-alone
programs, the pairs are released according to the GPL.

This section of the manual is about the following programs:

system-status-server

The program configures one message object for writing and one for reading. It
then transmits a packet through the former message object every time it receives
a packet from the latter message object. The transmitted packet carries 8 bytes
of status information: the uptime expressed in seconds, the current load average
and the amount of free memory expressed in KiBytes. Such information is collected
from files in ‘/proc’. By default the program uses message objects 1 and 2, receiving
packets addressed to ID 0x3500 and sending replies to ID 0x3400.



Chapter 10: Demonstration Programs 16

system-status-client
The program configures one message object for writing and one for reading. It
then transmits empty packets and expects to receive a reply packet for each packet
sent. The reply packet is dumped to stdout assuming it uses the format written
by system-status-server. By default the program uses message objects 1 and 2,
receiving packets addressed to ID 0x3400 and sending replies to ID 0x3500. It
delays a configurable time lapse after each packet exchange, the default delay is
100ms.

demo-source
The program configures a message object for reading. It then prints to stdout the
data bytes received on that message object. By default the program uses message
object 3, receiving packets addressed to ID 0x4400. Error flags found in received
packets are reported to stderr.

demo-sink

The program configures a message object for writing. It then prints transmits using
that message object every data received from stdin, either 8 bytes at a time or less
(if read returns less bytes. The program exits when it finds end-of-file in its standard
input. By default the program uses message object 3, sending packets to ID 0x4400.

The source code for the four programs is very similar, and all of them take a similar set
of command-line options. All options get a default value at compile time, but such defaults
can be overridden by predefining a C preprocessor macro. For example the delay option for
system-status-client defaults to 0CAN_SSC_DELAY. Please check the source code for the list of
options.

The programs pairs with the default configuration can communicate if run on two different
host computers; if you connect two interfaces controlled by the same computer you’ll need
to use command line options. For example, the following pair of commands establish local
communication:

demo/system-status-client
demo/system-status-server -f /dev/ocan/b -m 5,6
All programs spit a short help message if you pass them any unrecognized option (like -h or
--help). The following list details the meaning of each option:
-d delay
A delay, expressed in milliseconds, added after sending each data packet (demo-sink,
default 10ms) or across transactions (system-status-client, default 100ms).

-f devicefile
The device being used. It defaults to ‘/dev/ocan/a’.

-i idr,idw

-iidr

-i idw
The message ID or ID pair. These numbers can represent either standard or ex-
tended identifiers, with the same syntax used by ocan_control and demo-rxmsg.

See Section 10.1.1 [Stand-alone Demo Programs|, page 14. See Section 9.1
[ocan_control], page 12.

-m msgr, msgw

-m msgr
-m msgw
The message object or message object pair used in communication.
-p
“Prefill” mode for system-status-server. Pre-filling the data packets can increase
throughput as seen by system-status-client, especially if you use a delay of zero.
-s

“Synchronous” more for demo-source. If set The program will disable buffering on
stdout.



Chapter 12: Mailing List 17

“Verbose” mode for all programs. The flag may or may not have any effect. Neither
the current implementation of verbose mode nor future changes will be documented
here.

10.2 Demonstrating Error Management

Errors are notified to the driver via the status-register interrupt. Such interrupt is fired when
the warning or error bits get set in the status register. When such an interrupt happens, any
process that is waiting for error notification is awakened and can read the current value of the
status register, either via ioctl or via read from ‘/dev/ocan/a-error’ or equivalent file. If the
cable is not connected the warning and the error bits will be quickly set one after another; it’s
likely a process will only read the second change, since only the current status register can be
returned, and not the history of changes.

A process can be notified of an error in several ways; all of them are shown in the following
demonstration programs:

demo-error-signal
The program shows how to receive a signal when the error file becomes readable.
An argument on the command line is used to open a file different from the default
‘/dev/ocan/a’. Note that there’s no need to open ‘/dev/ocan/a-error’ to receive
error notification via a signal.

demo-error-read
A program using the read system call to wait for error notification. An ar-
gument on the command line is used to open a file different from the default
‘/dev/ocan/a-error’. The file specified must be an error file. The program is
a shell script, since there’s no need to write it in C.

demo-error-select
Like demo-error-read, but using select to wait for an error notification. Not Imple-
mented, yet.

11 Known Bugs and Issues

Read and write are still not implemented

There is no control about change of direction for a message object; the application is required
to always use the object consistently; any change of direction must be performed during inactivity
of the message object.

12 Mailing List

There is a mailing list for discussons about Ocan. You can post suggestions, requests and
bugs you encounter while using this package.

To subscribe to the mailing list, send an empty message to ocan-request@ar.linux.it with an
empty body and subscribe in the subject.

There is also a read-only mailing list for CVS commits. Subscribe to this mailing list if you
want to be notified by e-mail of CVS changes.

To subscribe to the CVS mailing list, send an empty message to: ocan-commit-
request@ar.linux.it with an empty body and subscribe in the subject.



Table of Contents

The ocan Package.................. .o, 1
1 Introduction.................iiiiiiiiinnan... 1
2 Contributed Code ............ ... 1
3 Installing the Package......................... 1
3.1 Compiling the Package. .............. ... ... ... ... ... ... 1

3.2 Loading the Kernel Module .................................. 2

3.3 Unloading the Module ............. ... ... .. i i 3

34 Device Types ... 3

4 Device Special Files........................... 4
5 Device Methods ................... ... iu... 4
6 Toctl.....ovuunuuu i 5
6.1 Low-level Commands ............ ..ot 6

6.2 Higher-level Commands........................coiiiiiiea... 6

7 Sending and Receiving Packets ................ 8
7.1 Message Ownership........ ... ... i i 8

7.2 Useof 0CAN MSG. .. ..o vrtii e 9

7.3 Use of ONONBLOCK and O_SYNC ......................... 9

8 /proc/sys/dev/ocan ........... ..., 10
8.1 Global Configuration ................. ... i 10

8.2 GEAssysctlFiles ........oooiiiiii i 11

9 UserSpace Tools ..........civiiiiiiinnnnnnns 12
9.1 ocan_control .......... .. 12

10 Demonstration Programs ................... 14
10.1 Demonstrating Communication............................. 14

10.1.1 Stand-alone Demo Programs....................... 14

10.1.2 Demo Program Pairs.............................. 15

10.2 Demonstrating Error Management.......................... 17

11 Known Bugsand Issues..................... 17

12 Mailing List . .......ooiiiiiiiiiiiiiaa... 17



