Kirk 2.01

Kernel driver for Infra-Red Keyboard
A driver for a keyboard talking on the serial port
October 2001

by Alessandro Rubini (rubinielinux.it)

Chapter 2: Features of the driver 1

This file documents version 2.01 of the Kirk device driver and associated user-space
programs (October 2001).

The driver implements a line discipline for tty devices and is actually not involved with
any infra-red. The target device of this driver is a Sejin peripheral that connects to a
standard serial port. The device receives input from a keyboard (possibly with a built-in
pointer) and a remote control device. Version 2.00 adds support for version 2.4 of the kernel
and for the internal mouse (that is builtin in the keyboard). The mouse is fed to user space
via a misc device that speaks the PS2 protocol.

1 Compiling and Loading

To compile the driver and associated code run make. This compiles ‘kirk.o’ kernel mod-
ule and the user-space utilities called ‘kirkdump’ and ‘kirkrun’. By default the ‘Makefile’
assumes kernel headers live under ‘/usr/src/linux/include’; if yours are found in a dif-
ferent place set KERNELDIR in your environment or on the command line of make. For
example:

make KERNELDIR=/usr/src/linux-2.2

To load the device driver you just need to run ‘insmod’ or ‘modprobe’, with ‘kirk.o’
as argument. The driver registers a line discipline for tty devices. Activation of the line
discipline must be performed by a user-space program.

Please note that support for <linux/modversions.h> has beed disabled after version
2.00 of kirk because I had a mismatch when loading on the lixux-2.2.12-20 as precompiled
by RedHat, so I'd better compile without version support and avoid load-time errors.

2 Features of the driver

The driver has been designed to be as flexible as possible, especially with regard to
possible changes of the key layout. This means that the protocol used by the actual device
to report key-press and key-release events is somewhat configurable at compile time (instead
of being completely hardwired in source code).

kirk is also able to drive keyboard leds (by writing commands to the serial port), but
this feature only works with 2.2.18 and later kernels, as the internals were not exported with
earlier kernel versions (2.2.18 added it because it was needed in supporting USB keyboards).

2.1 Keymap Definition

The source file ‘keymap.c.in’ is used to generate the output file ‘keymap.c’, which is
then fed to the compiler. The initial part of ‘keymap.c’ is preserved in the process, so you
should not delete ‘keymap.c’, which acts as both input and output in the build process.

The length of data packets is fixed to four bytes, and ‘keymap.c.in’ defines the meaning
of the packet. The program, however, has hardwired assumptions on the overall format of
the packet: the first byte is assumed to be a “magic” identifier, the second byte is an “input

Chapter 2: Features of the driver 2

device” selector (so several device can talk through the same serial port) and the fourth
byte is the key identifier. The most significant bit of the third byte is ignored and other
bits are ignored.

Each line of the ‘keymap.c.in’ input file is processed separately; blank lines and lines
that begin with an hash mark (#) are ignored, other lines are interpreted according to the
first blank-separated word:

MAGIC

MAP

LED

MOUSE

This line defines the value that is expected in the first data byte, the value is
parsed as an integer. All valid packets must begin with this byte value. Only
one such lines must appear in the file.

This line is used to select a specific input source for the following I and 0 lines.
The MAP keyword is followed by a single byte value.

This line lists a number of “input” keycodes. Data appearing after the leading
I is parsed as a list of byte values, each value representing one of the possible
values in the fourth byte of a data packet.

The line lists “output” keycodes. Data appearing after the leading 0 is parsed
as a list of byte values, and it must be the same length as the preceding I line.
Each value represents the PC-keyboard keycodes that must be associated to the
corresponding “input” keycode. By a proper layout of the I and O lines, you
can make the file visually similar to the keyboard map, thus greatly simplifying
the identification of any error in defining the keys.

Lines with a leading LED string are used to specify how output leds are con-
trolled. Each line is made up of three words: LED, a sub-identifier and a byte
value. The ‘base’ sub-id is used to state the output byte that means “no led”,
the ‘scroll’, ‘num’, and ‘caps’ sub-ids specified a value (usually a single bit)
that is XOR’d to the base value in order to light the specified led.

Lines with a leading MOUSE string are used to specify how mouse data packets
are decoded. The directives specify a set of keymaps (as mouse buttons are
reported as bits in the first byte, the one that identifies the keymap) that must
be managed by the mouse decoder. The values are an AND-mask that is applied
to the first data byte after the magic number and the value that is expected as
result.

Other MOUSE lines specify how buttons and coordinates are decoded. Either
kind of line includes an identifier (1-3 for buttons and x or y for coordinates)
and three numbers. The numbers represent the data byte to be used, an AND-
mask and an XOR-mask. Using the XOR value it is possible to invert the
coordinates or button state.

Chapter 2: Features of the driver 3

The best exemplification of the file format is a working example; ‘keymap.c.in’, as
distributed, is a good example and is quite well commented as well. The following lines are
extracted from the distributed ‘keymap.c.in’, stripping most data and all the comments:

comment

MAGIC 0x97

MAP 0x10

I 0x08 0x1B
0 89 90

I 0x59 0x69 0x79
0 79 80 81

MAP O

I 0x0c 0x41

0 111 111

LED base 0xe0

LED scroll 0x01
LED num 0x02
LED caps 0x04

MOUSE maps 0xf8 0xf8
MOUSE button 1 1 0x01 0x00

MOUSE button 2 0x02 0x00
MOUSE button 3 1 0x04 0x00

[y

N

MOUSE motion x Ooxff 0x00
MOUSE motion y 3 Ooxff 0x00

2.2 Led support

The serial device is assumed to turn on and off keyboard leds by means of single-byte
commands (where individual bits select individual leds).

The actual values to be output are defined in ‘keymap.c.in’, whose syntax is described
in Section 2.1 [Keymap Definition], page 1.

Since the Linux kernel sources earlier than 2.2.18 don’t export support for keyboard leds
to modules, kirk won’t have such support when compiled against earlier kernel versions.

Chapter 2: Features of the driver 4

2.3 Autorepeat

Key-repeat data packets sent by the hardware are disregarded, as they make no practical
sense (moreover, the way they are generated requires extra software overhead in order to
remove false key-press events. The driver keeps track of which keys are currently down
in order to properly remove all repeat events sent by hardware (instead of just dropping
a packet that is identical to the previous packet, which would work if auto-repeat was
implemented sanely in hardware).

The driver generates its own auto-repeat events by using kernel timers. Auto-repeat is
characterized by two time lapses: the delay before the first repeat event is generated and
the delay across successive repeat events. Both time lapses can be specified as a count of
clock ticks (which, on the x86 platform, is once every 10ms).

The default auto-repeat values are 50 (half a second of delay) and 10 (100 ms across each
repeat event). They can be changed by writing to ‘/proc/sys/dev/kirk’. For example,
this command can be used to have a delay of 1 second and one repeat every 200 ms:

echo "100 20" > /proc/sys/dev/kirk
and the following command lowers the delay to 200ms and a repeat rate of 33 chars per
second:

echo "20 3" > /proc/sys/dev/kirk

Only the superuser is allowed to change the time lapses.

2.4 Mouse Support

Version 2.00 of the package adds mouse support as a misc device. The device entry point
uses a dynamic minor number and appears in ‘/proc/misc’ as kirk. Decoding of mouse
data packets is configured in ‘keymap.c.in’ (see Section 2.1 [Keymap Definition], page 1),
and the information is reported to user space as PS/2 data packets. Both X and gpm can
run flawlessly using that device.

The ‘gpm’ command like should be something like:

gpm -m /dev/kirkmouse -t ps2
while the configuration for XFree-3.3 should look like:

Section "Pointer"

Protocol "ps/2"
Device "/dev/kirk"
Buttons 2
Emulate3Buttons
Emulate3Timeout 50
EndSection

For XFree-4.0 the configuration will look like:

Section "InputDevice"
Identifier "Mousel"

Driver "mouse"
Option "Protocol" "PS/2"
Option "Device" "/dev/kirk"

Option "Emulate3Buttons"

Chapter 3: User-Space Programs 5

Option "Emulate3Timeout" "50"
EndSection

3 User-Space Programs

The package includes two user-space programs. One for dumping data bytes from the
serial port and one for actually running the line discipline and generate keyboard events.

3.1 kirk_load and kirk_unload

These are two trivial scripts that can be used to load and unload the module.

In addition to ‘insmod’ and ‘rmmod’, respectively, the files also create and remove the
mouse device entry point as ‘/dev/kirkmouse’.

3.2 kirkdump

The program is used to print to stdout data bytes received by the serial port, four at
a time. It doesn’t use the kirk line discipline but normal serial communication (with the
default line discipline).

It receives a single command line argument, the name of the serial device to open. For
example:

kirkdump /dev/ttyS0

3.3 kirkrun

The program activates the kirk line discipline on a serial port. It needs the ‘kirk’ module
to be loaded. To restore the default line discipline (and thus stop kirk operation), you can
simply kill the program (as the default line discipline is restored when a tty device is closed).

The program receives a single command line argument, the name of the serial device to
open. For example:

kirkdump /dev/ttyS0

Table of Contents

1 Compiling and Loading

2 Features of thedriver......................

2.1 Keymap Definition
2.2 Led Support
2.3 AUtOrepeat
2.4 MouSe SUPPOTt. .« v vttt

3 User-Space Programs
3.1 kirkload and kirk_unload

3.2 Kirkdump...... ...
3.3 Kirkrun ...

