Ettcl 13

A Tecl interpreter reduced in size and enhanced in features,
the core for The EtLinux mini-distribution for embedded systems.
December 2001

by Alessandro Rubini (rubinielinux.it)

Chapter 1: Introduction 1

Ettcl-13

This file documents version 13 of the Ettcl version of the Tcl interpreter. Ettcl is based
on Tcl-7.6.

1 Introduction

The Ettcl project was born in 1998 as the core of EtLinux, a small distribution that
includes the Linux kernel and a minimal set of tools, meant to run on a 386 with 2MB of
memory. Everything in EtLinux is written in Tcl, on order to save memory by aggressively
exploiting memory sharing across processes.

The Tcl interpreter, therefore, has been extended with process-control primitives in order
for init to be able to spawn processes and reap zombies. Moreover, the interpreter has been
removed by trimming most of the features that were not going to be used, especially those
that needed a non-negligible amount of memory. Moreover, floating point support has
been completely removed, so we could run a system without either a hardware FPU or the
software emulator. Trimming the FPU emulator from the kernel saved us 40kB of memory,
a huge amount when you have 2MB to host the whole runtime.

1.1 Portability

While the EtLinux project was born on the i386 platform and Ettcl needs a CPU with
memory management, we have always been careful to keep cross-platform portability. Ettcl
has been used on several platforms: Alpha, Sparc, Sparc64, PowerPc, MIPS, Arm. On
the i386 platform you can compile it to work with libc5 or libc6, by selecting CC in your
environment before compiling.

The interpreter is less than 250kB (525kB if statically linked with libc) when compiled
against libc6, and less than 220kB (470kB if statically linked) when compiled against libc5.

1.2 Compilation

The package is compiled in the usual way:
./configure && make

The following option can be passed to configure. Only differences against the pristine
Tcl-7.6 tree are documented; use "./configure —-help" to get a complete list of options.

e —disable-shared

Compilation of shared libraries is the default with Ettcl, but it can be disabled
e —enable-double
e —enable-math

By default, all floating point has been removed, as well as all dependencies from Ilibm.
The interpreter can thus run in FPU-less computers (like the 80386) without the need
for an FPU emulator in the kernel (but this requires changes to libc as well, see the
EtLinux distribution about that.

Chapter 3: Features added to Tcl-7.6 2

e —enable-history

History management in Tcl has been disabled to save space in the executable, it can
be reenabled.

e —disable-strerror

By default, Ettcl uses strerror and strsignal to map error and signal names to strings.
With this directive you can restore the original Tcl behavior.

e —disable-prosaext

This directive disables all Ettcl extensions (i.e., everything that is described in this
manual).

e —disable-386

By default, compilation is optimized for the 80386 CPU. This directive is valid only
when compiling for the xi86 platforms, and disables 386-specific features. Those fea-
tures are "-m386" in the compiler flags and not requiring alignment of functions and
loops, in order to save space in the binary.

2 Features removed from Tcl-7.6

The following features have been removed from Tcl-7.6, or made optional and disabled
by default:

e multi-platform support

While T«cl-7.6 compiles on Unix, Windows and MacOS, we removed all non-Unix ma-
terial to save space in the distribution.

e manual pages

Since everyone has Tcl manual pages, we chose to remove the manual pages from this
distribution. Please refer to the original Tcl-7.6 package for documentation about the
language.

e floating point

No floating point support is there by default.
e history

No command history is there by default
e package support

Package support has been removed to save space, as EtLinux does not use it.

3 Features added to Tcl-7.6

Development of ettcl added several commands to the interpreter. Some of them are sys-
tem calls or other low-level utilities, some other are simple substitutes for system commands
(like ps and cat). The former group is implemented in C, the latter group as procedures
within init.tcl.

Chapter 3: Features added to Tcl-7.6 3

3.1 new commands

The following new commands have been added to the Tcl language. They are grouped by
functionality rather than alphabetically: this sections describes basic multiprocess system
calls, then other useful system calls, pseudo-tty management, file management, network
management, and finally generic utilities.

sys_fork

Implements the fork system call. It returns 0 to the child, a positive PID to
the parent and -1 in case of error.

sys_wait
sys_wait <pid>
sys_wait nohang
Implements the wait and waitpid system calls. Without arguments, the com-
mand waits until a child exits. With a numeric argument, it waits until that
specific child exits. With a nohang argument it calls waitpid(-1, &result,
WNOHANG). The return value is a list of two elements, the return value of wait
(i.e., the PID of the child), and the exit status of the child process. “sys_wait
nohang” returns an error of “No child process” if the current process has no
children, and an error of EAGAIN (i.e., “Try again” or “Resource temporarily
unavailable”) if no child is ready to be collected.
Examples:
% if ![sys_fork] {exit 34} else {puts [sys_wait]l}
=> 25958 34
% sys_wait nohang
=> sys_wait: No child processes

sys_exec <command> [<args> ...]
Implements the execvp system call (i.e., it passes the argv vector unchanged
and searches the system path). This usually makes only sense after sys_fork, in
the child process.

Examples:
% if ![sys_fork] {sys_exec true} else {puts [sys_waitl}
=> 25978 0
% if ![sys_fork] {sys_exec false} else {puts [sys_waitl}
=>25979 1

% if ![sys_fork] {sys_exec grep . /etc/issue} else \
{puts [sys_wait]}

=>Debian GNU/\s 2.2 \n \1

=> 25980 0

% if ![sys_fork] {sys_exec grep . /dev/null} else \
{puts [sys_wait]l}

=> 25981 1

sys_pipe [<varname> <varname>]
Implements the pipe system call. The newly created file channels are either
returned as a Tcl list or saved in the variables provided on the command line.

This example shows the minimal use of a pipe:

Chapter 3: Features added to Tcl-7.6 4

% sys_pipe a b

% if ![sys_fork] { puts $b pio; exit }
% close $b

% while {[gets $a s]>=0} { puts $s }
=> pio

% sys_wait

=> 27324 0

sys_dup <oldfile> <newfile>

Implements the dup2 system call. The new file must be opened (so there is
already the internal Tcl structure for it) and must be in the same mode as the
original file (i.e., opened for reading, for writing, or both). This is used when
creating pipes and attaching them to, for example, stdin and stdout.
Example:
sys_pipe in out
if ![sys_fork] {
sys_dup $out stdout; close $in; close $out
sys_exec cat /etc/issue
}
close $out
while {[gets $in string]>0} {
puts "Read: $string"
}
close $in
sys_wait

sys_kill [-<signal>] <pid> [<pid> ...]

Implements the kill system call. If the first argument is prefixed with a dash,
it is interpreted as a signal number or signal name (uppercase without leading
SIG, e.g. -USR1); by default the signal being sent is SIGTERM. All remaining
arguments are used as process identifiers or group identifiers (if negative). Note
that currently it isn’t possible to sent SIGTERM to a process group by only
specifying the process group (as the negative argument will be parsed as a
signal number.

sys_nice <value>

sys_sync

Implements the nice system call. The argument must be an integer number.
Lower priority is specified by negative numbers ("dash-10" like it was an op-
tion). Higher priority is specified with a positive number (no dash), and is only
available for the superuser (there are no checks in Ettcl, it’s the nice system
call that will complain).

Implements the trivial sync system call.

sys_signal <signame> IGNORE
sys_signal <signame> DEFAULT
sys_signal <signame> <tcl-script>

The command is a frontend to sigaction or signal. A signal can be ignored or
restored to default behavior, or handled by a Tcl script. The signal name is

Chapter 3: Features added to Tcl-7.6 5

specified in uppercase and with no leading SIG, or as a decimal number. If
a script is provided, it will be run at global scope as an asynchronous event.
During execution of the script the variable tcl_signal is set to the name of
the signal being handled (or the number if there is no mapping to the name).
Ettcl currently can handle the following signals by name, other signals can still
be specified by number: HUP, INT, ILL, KILL, SEGV, SEGV, USR1, USR2, CHLD,
I0, and WINCH.

The preferred wait to handle SIGCHLD loops on “sys_wait nohang” until the
call fails, to account for the case of a lost signal — when multiple children die
before the first is reaped. For example:

sys_signal CHLD {while 1 {sys_wait nohang}}

sys_reboot reboot

sys_reboot halt
Reboots or halts the system, and is only available to the init process (i.e., if
the PID of this process is not 1, the command is not executed). This is used
within EtLinux.

sys_ttypair [<varname> <varname>]
Tries to open a master and a slave tty’s. It is used in telnetd (see Section 4.4
[Telnetd and Telnetc], page 23) to open a controlling terminal for new inbound
connections. The new Tcl channels are returned either as values of the two
specified variables, or in a list of two elements as return value of the command.
Note that you need superuser privileges to open a pair of terminals.

sys_opentty
Tries to elect the stdin channel for the process as the controlling tty for the
process. It is used in telnetd (see Section 4.4 [Telnetd and Telnetc], page 23)
to associate a controlling terminal to the child process.

sys_chmod <mode> <file> [<file> ...]
Implements the chmod system calls. The mode is accepted as a number (prefix
with a 0 to get octal notation). For compatibility with earlier versions of Ettcl,
it is possible to call “sys_chmod file mode”.

sys_umask <value>
Implements the umask system call. Use a leading 0 to specify an octal number.

sys_mknod <type> <pathname> <mode> [<major> <minor>]
Implements the mknod system call. The type argument can be one of S_IFREG
(regular file), S_IFCHR or ¢ or u (char device), S_IFBLK or b (block device),
S_IFIFO or p (fifo, or named pipe). The pathname is the new node to create,
mode is the file permission modes for the new file (use a leading 0 to specify an
octal number), and major and minor are used when creating device nodes.

Chapter 3: Features added to Tcl-7.6 6

ifconfig <interface>

ifconfig <interface> addr <addr>

ifconfig <interface> netmask <netmask>

ifconfig <interface> broadcast <broadcast>

ifconfig <interface> pointopoint <pointopoint>
Permits basic interface configuration functionality. In EtLinux it is used to
bring up networking at boot time. When called with a single argument, the
command returns the current configuration for the interface. When called with
one of the listed extra arguments, it configures the interface.

route

route add <addr> netmask <mask> dev <dev>

route add default gw <gw> dev <dev>
Permits basic routing configuration. Note that route deletion is not imple-
mented. If you need such functionalities at runtime you’ll need to have a real-
world route command in your system. Please note that adding a route for the
network directly connected to the device is not needed any more with kernel
2.2. If you boot 2.2 or later kernels, therefore, you’ll typically only need to add
a default to your system, after the network card has been configured. With 2.0,
on the other hand, the LAN route must be added explicitly.

udp open [-o <option>[,<option>...]] <port> [<remoteIP>:<port>]

udp open [-o <option>[,<option>...]] client [<remoteIP>:<port>]

udp close <sock>

udp sendto <sock> [<remoteIP>:<port>] <msg>

udp recvfrom <sock> <fromvar>

udp join <sock> <multicastIP>

udp setmonitor <sock>
The udp command implements UDP networking. Due to limitations int Tcl-7.6,
data being transmitted may only be text.

The open subcommands opens a new Tcl channel, and returns its identifier
string. Allowed options are reuseaddr and broadcast; refer to the setsockopt
manual page for details on their meaning. If the port argument is the literal
string client, then the local port is randomized in the interval from 60000 to
62000. The optional remotelP:port argument specifies the default destination
for packets sent through this socket.

The close subcommand closes the socket and frees any allocated memory asso-
ciated to that socket.

The sendto subcommand is used to send an UDP frame. The destination of
the frame (remotelP:port), if missing, is taken from the default specified in udp
open.

The recvirom subcommand waits for an UDP frame, and returns its contents
as return value of the command. The remotelP:port information for the sender
is stored in the fromvar variable, specified by the caller.

The join subcommand associates the socket to a specified multicast address.
This allows to receive multicast packets.

Chapter 3: Features added to Tcl-7.6 7

xtime
xtime
xtime
xtime
xtime
xtime
xtime
xtime

The setmonitor subcommand elects the specified socket as source for monitor
information. If a monitor is specified, any outgoing UDP frame is first trans-
mitted through the monitor address. The elected socket must feature a default
destination, specified at udp open time. Using the monitor feature, and by
setting a multicast address as destination address, you can easily monitor all
UDP communication happening between cooperating applications by means of
an external process that associate itself to the multicast group (actually, by
using multicast, you can have monitor information collected independently in
several places of the network).

[-milli|-micro]

-format <fmt> [<time_t>]

-http [<time_t>]

-diff <time>

-timeto <time>

-wait <tvar> <step>

-split <array> [<time_t>]

-join <array>
The xtime command replaces and expands the clock Tcl command. All floating-
point values (fractions of seconds: milliseconds or microseconds) are handled
using integer arithmetic, so everything can run on processors that lack an FPU
(like a 386 or 386SX, but this is not limited to the i386 architecture).

The basic xtime command returns the number of seconds from the epoch. This
is the standard time_t value used in all Unix systems to report the current time.
If -milli or -micro is specified, a fractional part is added to the number.
Examples:

% xtime

=> 1006574784

% xtime -milli

=> 1006574786.829

% xtime -micro

=> 1006574789.629305
The -format option specifies a format to report a time_t according to strf-
time(3) (see the man page for strftime for details). The time being printed is
either the current time or the one specified on the command line.
The -http option requests a time representation confirming to the HTTP pro-
tocol. This can’t be accomplished using -format because HT'TP requires the
time to be reported in the GMT time zone, while xtime -format uses the local
time zone. The command is used in the httpd implementation (see Section 4.2
[Httpd], page 15).
Specifying -diff makes xtime return the difference between the specified time
and the current time (thus, negative values means the specified time has al-
ready passed). The -timeto option, on the other hand, returns the number of
milliseconds before the specified time is reached; -timeto is designed to return
a value suitable for the Tcl after command, thus 0 is returned for time events
in the past (instead of returning a negative number that would make after spit
an error if the value isn’t checked by the application).

Chapter 3: Features added to Tcl-7.6 8

Examples:

% set t1 [xtime -micro]
=> 1006575363.669081

% xtime -diff $ti1

=> -6.405620

% set t2 [xtime]

=> 1006575469

% incr t2 60

=> 1006575529

% xtime -diff $t2

=> 43

% xtime -timeto $t2

=> 37371

% after [xtime -timeto $t2]
% puts "$t2 [xtime]"

=> 1006575529 1006575533

The -wait options reads the tvar variable as a time value; adds tstep and saves
the resulting value in the same tvar variable. It then waits until that time
instant is reached and returns. The command is designed to allow execution
iterations of a task with a sharp time interval from each loop to the next.

puts [set t [xtime].000000]

=> 1006581978.000000

for {set i 0} {$i<4} {incr i} {
xtime -wait t 1.500000
puts "$t [xtime -micro]"
possibly do other tasks...

=> 1006581979.500000 1006581979.500020
=> 1006581981.000000 1006581980.999996
=> 1006581982.500000 1006581982.500029
=> 1006581984.000000 1006581984 .000003

If the time to be waited for has already elapsed, the command returns imme-
diately. In any case, the return value is the number of events that has elapsed;
this is normally 1, but can be greater if the command is invoked much later
than expected (for example, due to high system load). For example, if you want
to execute a task once per second but sometimes you have a delay if more than
one second across invocations of the command, you’ll get 2 or more as return
value. In case of delay, if you need to execute the task several times in a row to
get the same number of events each day (as opposed to simply loosing events),
you can use the following code:

set t [xtime]

while 1 {
for {set i 0} {$i<[xtime -wait t $intervall} {incr i} {
do stuff
}
}

If, on the other hand, you’d better loose events, use:

Chapter 3: Features added to Tcl-7.6 9

mount

set t [xtime]

while 1 {
xtime -wait t $interval
do stuff

}

The -split and -join commands are used to extract human-readable items
from a time_t value and to do the inverse operation. Splitting uses the current
time or the one specified on the command line, and sets a Tcl array as result,
similarly to the file stat command included in standard Tcl. The target array
is made up of the following elements: sec, min, hour, mday (day of the month),
mon, year, wday (day of the week), yday (day of the year) and isdst (whether
or not daylight saving is in effect). For the actual meaning of the elements
please refer to the manual page for the localtime C function. Joining is the
inverse operation, and the resulting time_t value is returned. Not all elements
must be set, and the rules of mktime apply. No error is returned when required
elements of the array are undefined.

mount /proc

umount

The command implements a minimal version of mount, usable to handle a
single-partition system. When called without arguments, mount remounts the
root filesystem in read-write mode. When called with a single argument, it
mounts the proc filesystem in the /proc directory. Even though the argument
is not currently parsed, it’s suggested to use /proc as argument when mounting
proc, to be forward compatible with possible later enhancements.

Note that in order to remount the root filesystem, the command needs to know
what device is used as root filesystem. Therefore, mount reads ‘/etc/fstab’,
and expects the first three words in the file to be the block device used as root
filesystem, the / directory, and the type of filesystem. Leading comment lines
in /etc/fstab are not currently ignored.

The umount command, trivially un-mounts /proc and /. Errors are not
checked.

uuencode <file>

uudecode

uuencode can be used to transfer files from an embedded system to a computer
connected to the serial console. Sometimes the serial console is the only com-
munication means you have with your computer, so ettclsh has been enhanced
to be able to send and receive files.

The command decodes a file received from standard input, reading it until the
end line is found. This allows to upload files to a system running a serial console
with ettclsh.

fcopy <infile> <outfile> [oncel

The command copies a Tcl channel to another Tcl channel. For example, this
is used to serve http pages in the Ettcl web server (see Section 4.2 [Httpd],

Chapter 3: Features added to Tcl-7.6 10

page 15). If the once flag is specified, the input file is read-from only once, and
only that data is pushed to the output file; this is used when Ettcl manages a
pseudo-tty, to copy binary data from across the master and the slave. If not
once flag is there, the input file is read up to end-of-file.

newcmdname <name>
This command saves name in ‘/var/run’, in a file associated to the PID of the
current process. This is how ps (see Section 3.2 [Procedures defined in init.tcl],
page 10) can tell several ettcl processes apart.

inp <port>

inw <port>

outp <port> <byte-value>

outw <port> <word-value>
The commands read and write 8-bit and 16-bit I/O ports. Arguments are
generic integers, so you must use a 0x prefix for hex numbers. The commands
use ioperm on the i386 platform, and use ‘/dev/port’ on other platforms. The
return value of the input commands is an hex number, output commands return
no value. No endian conversion is performed.

readb <addr>

readw <addr>

readl <addr>

writeb <addr> <byte-value>

writew <addr> <word-value>

writel <addr> <long-value>
The commands read and write 8-bit, 16-bit, and 32-bit values from/to main
memory. They use ‘/dev/mem’ to access system memory, and can be used to
access I/O memory if needed. Arguments and return values are the same as for
I/O port commands, described above, and no endian conversion is performed.

3.2 Procedures defined in init.tcl

The following commands are defined within ‘init.tcl’. They are various utilities and
replacements for system commands. They are used mainly in the EtLinux system. Some
of the commands are not defined as procedures if a real external command exists. For
example, you can just use 1s to use the real ‘ls’ command if available; this is different
from internal commands, that are always defined (thus, you need to type exec ifconfig to
access the external ‘ifconfig’ command, if any, as ifconfig always refers to the internal
commands.

If you want to run ettclsh without installing the package, please remember to set LD_
LIBRARY_PATH and TCL_LIBRARY in your environment; the latter must be the directory
where ‘init.tcl’ is found.

which <cmd>
The command returns the full pathname of cmd, if found in one of default
directories for command search. If no such command is found, an error is
issued. Note that currently which doesn’t use $env (PATH).

Chapter 3: Features added to Tcl-7.6 11

unknown <args>
The unknown procedure by default uses which to see if an external command
is available with the same name as the unknown command. If any exists, it is
run.

bgerror <error>
The command spits the error message to stderr, prefixed with the PID of the
process raising the error.

default_opt <name> <value>
If not already set, the command sets the item name in the global array options
to value. If the item is already set, it is not changed. This command is used by
the various sample daemons.

cat <file> [<file> ...]
Reads all of its arguments and prints their content to stdout. Files are assumed
to be text files. The command is not defined if a real cat command is installed.

free

Reports the amount of free memory, by returning the first two lines of
‘/proc/meminfo’. The command is not defined if a real free command is
installed.

grep <expr> <file> [<file> ...]
Runs a minimal version of grep, using the regexp Tcl command. If doesn’t
accept any option and doesn’t use stdin if no files are specified (use ‘/dev/stdin’
if you need to grep from stdin). The command is not defined if a real grep
command is installed.

1s <file> [<file> ...]
Is implements a small replacement for 1s -1. Note that if a file is a directory,
the directory itself is listed instead of its contents (this is the behavior selected
by the -d option to the standard Is command). The command is not defined if
a real Is command is installed.

cp

mv

rm
These three commands are simply wrappers to the subcommands of the Tcl
file command (file copy, file rename, file delete). Each of them is only
defined if no external command with the same name exists.

ps
Implements a simple replacement for the ps command. For each process, it
uses the information in ‘/var/run’ (if any) to tell the command name. Such
information is stored by newcmdname, and is used to differentiate between
several ettclsh processes that perform different tasks.

halt

reboot

Chapter 4: Applications 12

The commands are used by the Init process (see Section 4.1 [Init], page 13);
they send init a SIGUSR1 to halt the system or a SIGUSR2 to reboot the system.
Actual shutdown is handled by init.

cat-f <file>
tail-f <file>

These two commands run a separate process that reads the specified file and
prints its contents to stdout whenever it is readable. They are quick hacks to
read ‘/proc/kmsg’ and similar FIFO-like data channels; there is no support
to follow a regular file by monitoring size changes. The tail-f command reads
from a few hundred bytes before the current file end (using seek), while the cat-f
commands reads from the beginning of the file. The child process terminates
when EOF is reached.

interact <file> <prompt>
interact_oneline <ID> <prompt> <input> <output> <error>

The interact procedure forks a child process and uses sys_dup to attach the
file to stdin stdout and stderr. It then calls sets interact_oneline as fileevent
handler for stdin. You can set interact_oneline as fileevent handler for your own
file, specifying an identifier, which prompt string to use, and the files to use for
input, output and errors. The identifier is used as array element of the global
interact array, to build Tcl commands from several lines.

This mechanism is used by the console interaction script included in init (see
Section 4.1 [Init], page 13).

getAllowedHosts <service> [<file>]

The command returns a list of hosts (IP numbers or glob expressions) allowed to
use the service service. This is used in httpd (see Section 4.2 [Httpd], page 15),
telnetd (see Section 4.4 [Telnetd and Telnetc|, page 23) and cmdd see Section 4.3
[Cmdd], page 19). The configuration file being used is ‘/etc/hosts.allow’, by
default, but the caller can specify a different configuration file. The return value
is a Tcl list of glob expressions for IP numbers.

isAllowedHost <ip> <1list>

netconfig

This command matches an TP address against a list, usually returned by getAl-
lowedHosts, described above. It returns a boolean value. If the list of allowed
hosts for a service is empty, 1 is returned. Otherwise, the procedure returns 1
or 0 according to whether there is a match for the IP in the list.

Script to reconfigure the network parameters. It is run on the console by
‘S90interact’ to allow the user of a precompiled filesystem image to set up
an EtLinux system for his/her network. It’s self documenting.

4 Applications

The subdirectory ‘Applications’ includes a few sample applications, that are used in

EtLinux.

Chapter 4: Applications 13

4.1 Init

The init application is the code of EtLinux. It’s designed to run as process 1 of an
embedded system, and it reads the various configuration files to know how the system is
set up.

4.1.1 Boot time

When run, /sbin/init first reads ‘/etc/init.d/options’; the file sets elements of the op-
tions array, to configure system operation. It can also set the default command search path
by setting env(PATH), and invoke other Tcl commands. Please remember that evaluating
this file is the first thing init does when it starts.

These options are used to select init behavior during system boot. They are listed in
the same order as they are used.

options(fsck.root)
This boolean option chooses whether the root filesystem is checked at boot time,
using either ‘/sbin/fsck.minix’ or, if available, ‘/sbin/fsck’. The device
hosting the root filesystem is assumed to be the first word in ‘/etc/fstab’

If your system runs with NFS root, or if you don’t ship an fsck program, you
should set options(fsck.root) to zero.

options(remount)
This boolean options states whether the root filesystem must be remounted in
read-write mode. This option must be set to zero if you use NFS root, if you
mount read-write at boot time (in that case you can’t set options(fsck.root)
either, or if you want to run with a read-only root filesystem (in that case you’ll
need to set up at least ‘/tmp’ and ‘/var/run’ as separate partitions.

Note that support for running with a read-only root filesystem is not complete,
as init calls the Tcl exec command a few times before mounting all filesystems,
and the exec command creates files in ‘/tmp’. You’ll need to change init to
support a read-only root filesystem.

options (proc)
This boolean option states whether the ‘proc’ filesystem must be mounted un-
der ‘/proc’. It’s usually set to 1, and you’ll need to change a lot of applications
if you choose not to mount ‘/proc’.

options (swap)
This boolean option selects whether or not to run “/sbin/swapon -a”. To set
it, you need to have the swapon executable installed and at least one entry for
swap space in ‘/etc/fstab’

options(fsck)
If this boolean option is set to 1, then init will execute “fsck -R -A -V -a”.
You’ll need an executable called fsck in your command search path, and a valid
‘/etc/fstab’.

options (mount)
This option is, once again, boolean. It selects whether or not all local filesys-
tems must be mounted. If set, you’ll need to have external mount and umount

Chapter 4: Applications 14

commands. Init will invoke “mount -a -t nonfs” after umounting ‘/proc’.
If you need to mount NFS volumes, you can do that later using a script in
‘/etc/init.d/scripts’.

options(lowmem)
This option, if set, specifies the three watermarks used for memory management:
three value that will be written to ‘/proc/sys/vm/freepages’. Please note that
recent 2.4 kernels do not have that file any more and use a different mechanism
for setting memory limits. Since hosts running 2.4 are typically not memory
constrained, no memory control is offered for 2.4. If the option is not set, the
init process won’t do anything.

options (rm)
The boolean option controls whether or not init will try to remove all files in
‘/var/run’ and ‘/tmp’. If it does, it will recreate ‘/var/run/wtmp’, to login
programs won’t complain (if installed).

options(modules)
The option, if set, must be a list of module names, that will be passed to
/sbin/insmod, one at a time. To load modules you’ll need a version of insmod
that is compatible with the kernel you are running.

After processing the options described, he init program also reads all files in the directory
‘/etc/init.d/options.d’ so system applications can set their options without modifying
the main file. Note that all files in the directory are source as Tcl scripts, so you can actually
do more than setting options, if you need that. The files are read in alphanumeric order.

The next step in booting is running all scripts found in ‘/etc/init.d/scripts’. The
name of each script must start with “S” followed by a two-digit number. These scripts are
run once only. Typical tasks for these scripts are setting up the network, or mounting NFS
filesystems.

Then, init sources all scripts in ‘/etc/init.d/respawn’, restarting each of them as
soon as it terminates. The name of each script must start with “S” followed by a two-digit
number. These scripts are usually terminal login (or the shell running on the serial console).

Finally, any regular file found in /etc/applications is run as a separate process. These
processes are not restarted when they terminate, so if your application may terminate as
part of normal operation, you should either place it in ‘/etc/init.d/respawn’ or arrange
for restarting in the Tcl file.

Please note that everything that is started by init (i.e., all scripts in ‘scripts’, in
‘respawn’, and in ‘applications’) are Tcl scripts. They are read as Tcl commands using
the source command, even though the process that reads the file is not init but a child
process. If one of your applications is an executable file, you should write a short wrapper
script like this one:

sys_exec /your/path/to/application

Please don’t use "exec" in this case, to avoid running two processes where one will do.
Any file in ‘scripts’ and ‘respawn’ whose name doesn’t match “S*” will not be read. Any
subdirectory of ‘applications’ is ignored, so you can use for example a directory called
‘warehouse’ as a repository of applications that you want to keep around but don’t want
to automatically run.

Chapter 4: Applications 15

4.1.2 Shutdown time

During system runtime init waits for pending signals. Whenever SIGCHLD is received, a
process is reaped; if the process just died is to be respawned, init respawns it

If SIGUSR1 or SIGUSR2 are received, init halts or reboots the system (resp.); all processes
are sent the TERM signal and after a while the KILL signal; filesystems are unmounted (first
calling “umount -a”, then using the internal umount command, so all cases are covered);
and then the system is halted or rebooted. In order to halt or reboot the system from an
interactive ettclsh session you can invoke the halt or reboot procedures, that simply send
a signal to init. If you have no console access to see shutdown messages, you can count on
shutdown to take 5 seconds.

4.2 Httpd

The httpd program included in ettcl is compliant with version 1.0 of the HT'TP protocol;
even though version 1.1 of the protocol is widely used, version 1.1 requires compatibility
with version 1.0, so this httpd works with all recent browsers (but it might not work with
very old browsers, as it doesn’t accept queries that are not HTTP-1.0 compliant).

4.2.1 Httpd Configuration

The server is configured by setting items in the options array. These items can be set in
Tcl before the server is executed, and if they are not set the default is provided by httpd
itself.

The distribution includes httpd-run, a script that sets configuration variables and then
runs httpd. As an alternative, you can fill ‘/etc/httpd.cfg’, as described in Section 4.2.2.1
[Httpd Configuration Files], page 16.

These are the configuration variables, and their defaults:

options(httpd:cfg)
If the variable is set, then its contents are used as a configuration file name. The
file is executed using the source command. If it is not set, nothing happens.

options(httpd:port)
The TCP port where the server runs. If unset, it defaults to 80.

options(httpd:name)
The name of this service, used for host access control. If unset, it defaults to
"httpd".

options(httpd:hostsfile)

options(hostsfile)
The name of the configuration file for host access control. If unset, the
former variable default to the value of the latter, which in turn defaults to
‘/etc/hosts.allow’". You can thus elect a system-wide default hostsfile, or
one for this process alone.

options(httpd:docroot)
The document root, where HTML pages are looked for. If unset, it defaults to
‘/html’.

Chapter 4: Applications 16

options(httpd:log)
The name of the log file. The variable defaults to ‘/var/log/ettcl.log’. The
log messages being written includes the application name, so different servers
can share the same log file. All write operations are atomic (done with a single
write system call).

options(httpd:logfmt)

options(logfmt)
The format for timestamp strings; the timestamp string is used as a lead-
ing string for every line written in the log file. The default for the format
string is $options(logfmt), which in turn defaults to “%Y-%m-%d %H:%M:%S
%Z”. In an EtLinux system you might want to set options(logfmt) from
within ‘/etc/init.d/options’, so all servers will use the same format.

options(http:type:.html)
This variable is set to “text/html”. Whenever a file is served by the web server,
it’s extension is used to address an item http:type:extension in the options
array. You might set the types from a standard ‘mime.types’

if ![catch {set F [open /etc/mime.types]}] {
while {[gets $F str]>=0} {
if [regexp "~ *#" $str] continue
if [catch {set type [lindex $str 0]}] continue
for {set n 1} \$n<[llength $str] {incr n} {
set options(httpd:type:.[lindex $str $n]) $type
}
}
close $F
}

options(httpd:403)

options(httpd:404)

options(httpd:501)
The server can report HT'TP errors of type 403 (forbidden), 404 (not found), and
501 (not implemented). When the error is reported, if the associated variable
is set, its value is opened as a file name that is returned to the client, after the
standard error message. This allows customization of error reporting.

4.2.2 Httpd Features

The server supports up to two configuration files (to set array elements in the options
array or run arbitrary Tcl commands), host access control based on IP address, GET and
POST methods (using the CGI standard to talk with external applications), error reporting
with user-provided error notification files, Mime types associated to file names.

4.2.2.1 Httpd Configuration Files

Whe the server starts up, it reads the configuration file ‘/etc/httpd.cfg’, if it exists.
It then reads the file $options(httpd:cfg) if the variable is set.

Chapter 4: Applications 17

If you want to run several web servers on several TCP ports, you can avoid using
‘/etc/httpd.cfg’ and use a per-process configuration file by setting the httpd:cfg item
in options to a different value for each process.

Each configuration file, then, can set a different value for the TCP port number and for
the service name (to differentiate host access control while using the default hostsfile), or
change the name of the hostsfile, as well as other server features.

4.2.2.2 Httpd Host Access

The httpd process reads ‘/etc/hosts.allow’ (or whatever hostsfile defined by op-
tions(httpd:hostsfile) by calling the procedure getAllowedHosts using httpd as a key (or
whatever application name defined by options(httpd:name)). The configuration file speci-
fies which hosts are allowed to access the various Ettcl services.

Empty lines and lines that begin with a hash mark are ignored, other lines are formatted
like “service: host”, where host is a glob expression for an IP address. If a given service
doesn’t appear in the file, then all hosts are allowed. If the service appears in the file at
least once, then only IP addresses that match the glob expression are allowed. For example,
the following lines allow access from localhost, a C class and a single host. Note that you
can also place several glob expressions on the same lines, separated by space characters.

httpd: 127.*
httpd: 192.168.1.*
httpd: 151.38.134.203

To allow no hosts at all, use “httpd: none” or any other expression that doesn’t match
any IP address. To allow any host, use httpd: *, or no httpd line at all.

If you want to use the same access rules for all Ettcl services, you can define op-
tions(httpd:name) and all other service names to the same value (e.g., “any”), in order
to use the same set of host glob expression for all services.

4.2.2.3 GET and POST Methods

The server accepts GET and POST methods. Any query including either of “..”, “&”,
“pr o dxy w4y wgr) “sr “@? 0«17 s refused with an error of 403 Forbidden. See

Section 4.2.2.5 [Httpd Error Reporting], page 18.

Any query that starts with cgi-bin, with or without a leading slash is considered a CGI
request. See Section 4.2.2.4 [CGI Interface], page 17.

If the file being requested doesn’t exist, and error of 404 Not found is reported. See
Section 4.2.2.5 [Httpd Error Reporting], page 18.

Note that this version of the server doesn’t handle hex-encoded characters in file names
(for example, “47E” isn’t converted to “~”). It allows them in CGI parameters, though.

4.2.2.4 CGI Interface

If the filename requested by either a GET or a POST query begins with cgi-bin, either with
or without a leading slash, everything in the file name up-to and excluding the first question
mark is considered an application name (the application is searched in the filesystem in the
cgi-bin directory under the document root selected for the process).

Chapter 4: Applications 18

If the application is written in ettclsh, then the internal sys_fork and sys_dup commands
are used to attach to the application. Otherwise, the application is executed using the exec
Tcl command.

When the application is executed by the GET method, it will find QUERY_STRING set in
the environment. Moreover, if the CGI application is not a Tcl script, all arguments are set
as environment variables, and the current date in http format is recorded as DATE in the
environment. The example sh CGI applications use this information.

When the application is called via POST, it will find CONTENT_LENGTH set in the environ-
ment and will be able to read data from stdin. Note that you may need to remove trailing
newlines from query data.

The stdout of the application is directly connected to the network socket, with no inter-
vention from the httpd server.

Several CGI examples are provided in the source package, with a ‘cgidemo.html’ html
page that links to all of them.

Note that you can use the etget application (part of the httpd source dir) to time GET
and POST requests. These are some timings I get with a 386 running Linux-2.2.18 and
libch in 4MB of memory:

morganaj etget pico 80 ’/cgi-bin/glob?FILE=}2Fvar’,2Frun&GLOB="
HTTP/1.0 200 OK
0.502689
morganal, etget pico 80 ’/cgi-bin/1s?FILE=},2Fvar’,2Frun&GLOB="
HTTP/1.0 200 OK
0.362456

This is the same example run with 1MB less RAM:
morganaj etget pico 80 ’/cgi-bin/1s?FILE=Y,2Fvarj2Frun&GL0OB="
HTTP/1.0 200 OK
1.203962
morganaj etget pico 80 ’/cgi-bin/glob?FILE=},2Fvar’,2Frun&GL0OB="
HTTP/1.0 200 OK
3.515961

To run POST queries in etget, specify the POST data as fourth argument.

4.2.2.5 Httpd Error Reporting

The httpd application reports errors according to HT'TP/1.0. According to the setting
of configuration variables, an html file can be returned to the network connection, so you
can choose to return a custom error page instead of the plain error message. The custom
error page can even include a form (for example, to make the user report the error).

The daemon reports three errors:

e 403 Forbidden Returned if the query includes .. or one of the forbidden characters.
The html file, if any, is $options(httpd:403). See Section 4.2.2.3 [GET and POST
Methods|, page 17. The same error is generated whenever a client is rejected by host
access policy.

e 404 Not found Returned whenever the requested file or CGI application is not available.
The html file, if any, is $options(httpd:404).

Chapter 4: Applications 19

e 501 Not Implemented Returned when a method other than GET or POST is received, For
example, HEAD is not yet implemented. The html file, if any, is $options(httpd:404).

4.2.2.6 Httpd Logs

The applications writes log information to the log file, opened in append mode. Each
even being logged is written by issuing a single write system call, to prevent problems when
several processes write to the same log file.

The following events are logged, each of them is timestamped according to
options(httpd:logfmt):

e All errors Whenever an HTTP error is generated, the server writes one record to the
log file, including the error number, error string and detail. This includes all refused
connections because of host access policies.

e All queries As soon as a query is received, the server writes one log record including
the IP address of the client and the whole query string.

4.3 Cmdd and Cmdc

The cmdd application is a non-forking daemon for executing Ettcl commands. It runs
on both TCP and UDP sockets. To connect to the TCP port you can use telnet, to connect
to the UDP port you must use cmdc, which requires ettclsh on the client host.

cmdd is designed to allow interactive access to small computers, that would suffer from
running a real forking telnetd.

Warning: Please note that with cmdd you have unlimited access to the server system.
The program is meant to be used only for debugging and administration. Please be very
careful about host access configuration to cmdd. Also, please note that each client can
change the options array and thus redirect log files and to other hairy stuff, possibly un-
willingly.

4.3.1 Cmdd Configuration

The server is configured by setting items in the options array. These items can be set in
Tcl before the server is executed, and if they are not set the default is provided by cmdd
itself.

These are the configuration variables, and their defaults:

options(cmdd:cfg)
If the variable is set, then its contents are used as a configuration file name. The
file is executed using the source command. If it is not set, nothing happens.

options(cmdd:port)
The TCP and UDP ports where the server runs. If unset, it defaults to 2300
(reminiscent of telnet, that runs on port 23).

options(cmdd:name)
The name of this service, used for host access control. If unset, it defaults to
"cmdd".

Chapter 4: Applications 20

options(cmdd:tcp)
Whether or not the server should listen to the TCP port. The variable defaults
to 1 and can be set to 0 to prevent the TCP socket to be opened.

options(cmdd:udp)
Whether or not the server should listen to the UDP port. The variable defaults
to 1 and can be set to 0 to prevent the UDP socket to be opened.

options(cmdd:udptimeout)
The timeout value, in seconds, before an UDP connection is considered inactive.
It defaults to 60. Please note that cmdc explicitly closes the connection on exit,
so you can tell logout events from timeout events. The timeout mainly exists
in order to release memory associated to inactive client connections.

options(cmdd:hostsfile)

options(hostsfile)
The name of the configuration file for host access control. If unset, the
former variable default to the value of the latter, which in turn defaults to
‘/etc/hosts.allow’". You can thus elect a system-wide default hostsfile, or
one for this process alone.

options(cmdd:log)
The name of the log file. The variable defaults to ‘/var/log/ettcl.log’. The
log messages being written includes the application name, so different servers
can share the same log file. All write operations are atomic (done with a single
write system call).

options(cmdd:logfmt)

options(logfmt)
The format for timestamp strings; the timestamp string is used as a lead-
ing string for every line written in the log file. The default for the format
string is $options(logfmt), which in turn defaults to “%Y-%m-%d %H:%M:%S
%Z”. In an EtLinux system you might want to set options(logfmt) from
within ‘/etc/init.d/options’, so all servers will use the same format.

4.3.2 Cmdd Features

The server supports up to two configuration files (to set array elements in the options
array or run arbitrary Tcl commands), host access control based on IP address, TCP and
UDP operation.

4.3.2.1 Cmdd Configuration Files

Whe the server starts up, it reads the configuration file ‘/etc/cmdd.cfg’, if it exists. It
then reads the file $options(cmdd:cfg) if the variable is set.

If you might want to run several cmdd servers on several TCP/UDP ports, although it
isn’t as interesting as it is with HTTP. To run several servers, please refer to Section 4.2.2.1
[Httpd Configuration Files|, page 16.

Chapter 4: Applications 21

4.3.2.2 Cmdd Host Access

The cmdd process reads ‘/etc/hosts.allow’ (or whatever hostsfile defined by op-
tions(cmdd:hostsfile) by calling the procedure getAllowedHosts using cmdd as a key (or
whatever application name defined by options(cmdd:name)). The configuration file speci-
fies which hosts are allowed to access the various Ettcl services.

For detailed syntax and example use, please refer to Section 4.2.2.2 [Httpd Host Access],
page 17.

4.3.2.3 The TCP Server

The TCP server listens to a TCP socket and reads input line by line. When the con-
catenation of all pending lines build to a complete Tcl command, the server executes the
command at global scope. Input data received from different client sockets is never mixed,
so you can get multiplexing operation even if the server doesn’t fork child servers for each
active connection.

Please note that if the command takes time to execute, the server won’t be able to server
other client in the meanwhile. If you want to run such kind of tasks you need to run telnetd.

To connect to the TCP cmdd server, you need to use the standard telnet client, like this:

rudo’, telnet morgana 2300

Trying 192.168.16.1...

Connected to morgana.systemy.it (192.168.16.1).
Escape character is *°]°’.

% puts pio

pio

% set options(cmdd:port)

2300

% exit

Connection closed by foreign host.

The exit command, as shown, terminates the TCP connection. It doesn’t, however,
terminate the server process. Note that it is possible to terminate the server in some other
way (by killing it, for example). It’s worth repeating that cmdd is designed to be used only
as a debugging and administration tool for small EtLinux computers (those too small to
run a forking telnetd).

Please note that with cmdd, communication is line-oriented. Therefore you can’t run a
full-screen editor or anything like that in your interactive session. To that aim, please use
telnetd (see Section 4.4.2 [Telnetd Features|, page 24).

4.3.2.4 The UDP Server

The UDP server listens to an UDP socket. Input is expected to be received line-by-
line and if the packets have a trailing dot it is removed. The trailing dot is added by
cmdc in order to preserve the trailing newline, tha would otherwise be stripped by the
implementation of the udp Tcl command (that is text-oriented).

When the concatenation of all pending lines build to a complete Tcl command, the server
executes the command at global scope. Input data received from different client sockets

Chapter 4: Applications 22

is never mixed, so you can get multiplexing operation for different UDP clients, as well as
multiplexing TCP and UDP clients.

Please note that if the command takes time to execute, the server won’t be able to server
other client in the meanwhile. If you want to run such kind of tasks you need to run telnetd.

To connect to the UDP cmdd server, you need to use cmdc or an equivalent program.

The exit command, if sent by an UDP client, terminates the UDP connection (i.e., it
makes the server release memory associated to this client and record a logout event to the
log file. If a client doesn’t log out, a timeout event is marked after the timeout period
elapsed.

The same caveat about security as for TCP (see above) applies. Again, cmdd, commu-
nication is line-oriented. Therefore you can’t run a full-screen editor with it.

4.3.2.5 Cmdd Logs

The c¢mdd application records the following events to system logs:

e TCP Login When a new tcp connection is opened, the server logs the client’s IP address
and port.

e TCP Logout When a connection is closed, the server logs the IP address, the port, and
the duration of the connection.

e UDP Login When an UDP packet is received by a new client, the IP address and port
are logged.

e UDP Logout When a client sends an empty packet (i.e., only the trailing dot), a logout
event is logged, with TP, port, and duration of the connection.

e UDP Timeout If a client doesn’t send packets for the timeout time lapse (one minute
by default), a timeout event is logged with IP, port, and duration.

e TCP and UDP Rejected clients If a client (TCP connection or UDP packet) doesn’t
pass the host access control, the event is logged as well.

4.3.3 Cmdc

The cmdc program is the UDP client for cmdd. It is used much like the normal telnet
application but it send UDP packets for each input line (with a trailing dot added, as
explained in Section 4.3.2.4 [The UDP Server|, page 21).

At startup, the program sends an empty packet in order to mark a login event and get
back a prompt. When it reads EOF from stdin, it sends an exit\n line to the server. When
an empty packet is received the program terminates. If the empty packet is the first reply,
it reports a message of “Connection refused by remote host”.

If no prompt is shown at program startup, then the server did not reply or the reply
was lost. Please remember that this simple UDP communication is only reliable on a non-
saturated LAN.

rudo’, cmdc morgana 2300
% puts pio

pio

% set options(cmdd:udp)
1

% exit

Chapter 4: Applications 23

4.4 Telnetd and Telnetc

The telnetd application is a daemon that execute Ettcl commands running a subprocess
per TCP connection. Such subprocess is run ina virtual terminal, so you can call vi or other
full-screen programs from the shell. The server must be run by the superuser (otherwise, it
wouldn’t be able to open a tty pair), and you should use telnetc as a client. The daemon
listens to port 230 by default.

Warning: Please note that with telnetd you have unlimited access to the server system.
The program is meant to be used only for debugging and administration. Please be very
careful about host access configuration to telnetd. However, unlike cmdd, the client can’t
change the options array because each shell runs in a different process.

4.4.1 Telnetd Configuration

The server is configured by setting items in the options array. These items can be set in
Tcl before the server is executed, and if they are not set the default is provided by telnetd
itself.

These are the configuration variables, and their defaults:

options(telnetd:cfg)
If the variable is set, then its contents are used as a configuration file name. The
file is executed using the source command. If it is not set, nothing happens.

options(telnetd:port)
The TCP port where the server runs. If unset, it defaults to 230 (reminiscent
of telnet, that runs on port 23).

options(telnetd:name)
The name of this service, used for host access control. If unset, it defaults to
"telnetd".

options(telnetd:hostsfile)

options(hostsfile)
The name of the configuration file for host access control. If unset, the
former variable default to the value of the latter, which in turn defaults to
‘/etc/hosts.allow’". You can thus elect a system-wide default hostsfile, or
one for this process alone.

options(telnetd:log)
The name of the log file. The variable defaults to ‘/var/log/ettcl.log’. The
log messages being written includes the application name, so different servers
can share the same log file. All write operations are atomic (done with a single
write system call).

options(telnetd:logfmt)

options(logfmt)
The format for timestamp strings; the timestamp string is used as a lead-
ing string for every line written in the log file. The default for the format
string is $options(logfmt), which in turn defaults to “%AY-%m-%d %H:%M:%S
%Z’. In an EtLinux system you might want to set options(logfmt) from
within ‘/etc/init.d/options’, so all servers will use the same format.

Chapter 4: Applications 24

4.4.2 Telnetd Features

The server supports up to two configuration files (to set array elements in the options
array or run arbitrary Tcl commands), host access control based on IP address, TCP and
UDP operation.

4.4.2.1 Telnetd Configuration Files

Whe the server starts up, it reads the configuration file ‘/etc/telnetd.cfg’, if it exists.
It then reads the file $options(telnetd:cfg) if the variable is set.

Unlike httpd and cmdd, you would never need to run several servers at once, since each
client gets its own process anyways.

4.4.2.2 Telnetd Host Access

The telnetd process reads ‘/etc/hosts.allow’ (or whatever hostsfile defined by op-
tions(telnetd:hostsfile) by calling the procedure getAllowedHosts using telnetd as a key
(or whatever application name defined by options(telnetd:name)). The configuration file
specifies which hosts are allowed to access the various Ettcl services.

For detailed syntax and example use, please refer to Section 4.2.2.2 [Httpd Host Access],
page 17.

4.4.2.3 The Telnet Server

The TCP server listens to a TCP socket. When a new connection is received, after host
access control the daemon opens tty pair and forks a child. The child gets its standard files
connected to the slave tty, and forks an interactive shell.

The parent process continues to monitor the master tty and the network socket, copying
data from the pty to the network and vice versa as needed.

To connect to the telnetd server, you need to use the telnetc client, like this:

telnetc pico 230
accept TCP: sockb 192.168.16.1 3111

% free

total: used: free: shared: buffers: cached:
Mem: 1695744 1540096 155648 176128 8192 126976
% ps

User PPid Pid St Size RSS Name

0 0 1 S 1048 104 init

0 1 2 S 0 0 kflushd

0 1 3 S 0 0 kupdate

0 1 4 S 0 0 kpiod

0 1 58 0 0 kswapd

0 1 6 S 0 0 rpciod

0 1 19 S 808 56 inetd

0 1 20 S 1048 104 console-interaction
0 1 22 S 1076 148 cmdd

0 1 23 S 1072 144 httpd

Chapter 4: Applications 25

0 1 24 R 1076 196 telnetd

0 22 39 5 816 56 cat

0 24 41 R 1064 140 -sh(192.168.16.1)
% exit
morganay

The exit command terminates the child process, that is reaped by the parent.

4.4.2.4 Telnetd Logs

The telnetd application records the following events to system logs:
e Login When a new tcp connection is opened, the server logs the client’s IP address and
port.
e Logout When a connection is closed, the server logs the IP address, the port, and the
duration of the connection.

e Rejected clients If a client doesn’t pass the host access control, the event is logged as
well.

4.4.3 Telnetc

The telnetc program is the client for telnetd. It is written in standard Tcl, so you
don’t need to have Ettcl installed on the client computer. It behaves like a normal telnet
application, reading standard input in raw form and disabling character echo.

The program need to run the external stty command, to change tty modes on its own
terminal.

4.5 Crond

The crond program is an implementation of the usual cron Unix facility. It awakes every
minute and runs any pending command according to a single crontab file. If the crontab is
modified, you’ll need to restart the application.

4.5.1 Crond Configuration

The server is configured by setting items in the options array. These items can be set in
Tcl before the server is executed, and if they are not set the default is provided by crond
itself.

These are the configuration variables, and their defaults:

options(crond:cfg)
If the variable is set, then its contents are used as a configuration file name. The
file is executed using the source command. If it is not set, nothing happens.

options(crond:crontab)
The crontab being used. It defaults to ‘/etc/crontab’.

options(crond:recalc)
This boolean variable states whether or not crond will ask the current time
again before going to sleep. If you are changing the system date and time by

Chapter 4: Applications 26

more than a few seconds after boot you’ll need this, otherwise, crond will either
sleep for a long time (if you move the date backwards) or will loop (if you move
the date forward). If you don’t change the date after starting the application,
or you only fine-tune it to an external reference, then you can save cycles by
setting the variable to 0.

options(crond:log)
The name of the log file. The variable defaults to ‘/var/log/ettcl.log’. The
log messages being written includes the application name, so different servers
can share the same log file. All write operations are atomic (done with a single
write system call).

options(crond:logfmt)

options(logfmt)
The format for timestamp strings; the timestamp string is used as a lead-
ing string for every line written in the log file. The default for the format
string is $options(logfmt), which in turn defaults to “%Y-%m-%d %H:%M:%S
%Z’. In an EtLinux system you might want to set options(logfmt) from
within ‘/etc/init.d/options’, so all servers will use the same format.

4.5.2 Crond Features

The application reads a standard ‘crontab’ file.

Empty lines and lines starting with a hash mark are ignored. Lines that look like variable
assignment are used to set environment variables; the variable name must be made up of
uppercase letters and the underscore character), spaces and tabs around the = character
are ignored, and the rest of the line is used as value. Please note that trailing spaces in the
line are not trimmed.

Other lines in ‘crontab’ are parsed like the real cron does. But whereas the Unix cron
application passes the command to an external shell, this crond evaluates the command
using the Tcl uplevel command. Each command is evaluated in a child process.

Concept Index

Concept Index

/

/etc/applications 14
Jetc/emdd.cfg 20
Jetc/crontab 25
Jete/fstab ... 9,13
Jetc/halt. ... 15
Jetc/hosts.allowl 12, 17
Jete/httpd.cfg. 15, 16
/etc/init.d/options.ol 13
/etc/init.d/options.dol 14
/etc/init.d/respawn 14
Jetc/init.d/scripts 14
Jetc/reboot 15
Jetc/telnetd.cfg. il 24
JEIAD © e e 14
Jvarfrunl 14

A

accessing an EtLinux server 19
Alpha. ... 1
applications i 14
ARM .o 1
assigning MIME types 16

OO e e 1
CGIl arguments...................oooiunnn... 18
CGI environmentooviivunenee... 18
CGIfilenamesccovviiniiiiiiinnnnennn. 17
cgi-bin........ 17
cgidemo.html........... 18
CIAC e v v 19, 22
cmdd .. 19
cmdd configuration 19
cmdd configuration file....................... 19
cmdd configuration files 20
cmdd host accessl 20, 21
cmddlogfile........ L 20
cmdd log format................ ...l 20
cmdd logs . ..o 22
cmdd port ... 19
cmdd TCP supportoovveiienininnnnn.. 21
compilation 1
configuration o i 1

configuration at boot time.................... 13

27
configuration files for cmdd 20
configuration files for httpd................... 16
configuration files for telnetd 24
configuring host access 17
CONTENT.LENGTH 18
CTONA . o ettt e 25
crond configuration L 25
crond configuration file......... 25
crondlogfile..............l 26
crond log format............... ...l 26
crontab 26
crontab setting for crond, 25
D
data transfer L. 9
date ..o 7
DATE .. 18
delaysincemdd oL 21, 22
document-root............l 15
documentation 2
dup ..o 17
E
enabling TCPincmdd 20
enabling UDPincmdd....................... 20
environment in CGI applications. 18
environment in crond oo 26
error files for httpd 16
errors from httpd o oL 18
etget. 18
EtLinux........ocoiiii i 1
[14
EXEENSIONS -+ v v ettt e e e 2
F
featuresof cmdd........... ... i 20
features of httpd 16
file extensions in httpd 16
file management 3,4,5,9
file, operations on..............ccovieieain... 11
filesystem management........................ 9
floating pointoi ... 1,2
forbidden queries 17
fork. ..o 17
£8CK . e 13
full-screen 21, 22, 23

Concept Index

G

GET method, 17
H

halt 5,11, 15
HEAD method 19
history 2
host access. ... 12, 17
host access for cmdd 20, 21
host access for httpd...................... 15, 17
host access for telnetd 23, 24
hosts in host access 17
htmlpages.............l 15
http . 15
HTTP error logging.ccovvveiaa .. 19
http error reporting.............. 18
HTTP methods: GET and POST 17
httpdo 15
httpd configuration 15
httpd configuration file....................... 15
httpd configuration files...................... 16
httpd error files......... 16
httpd host access. 15, 17
httpdlogfile, 16
httpd log format................... 16
httpdlogs........ o i 19
httpdport 15
httpd-run 15
I

I/Omemory........oooviiiiii ... 10
I/OPOTrtS . oo 10
1386 . . oot 1,2
imittel . .o 10
initialization file 10
INSMOd. ..o 14
interactioncooiiiiiiii i 12
interactive access 19
interfaces.oooiii i 6
IP client addresses 17
L

Hbeh . .o 1
HbeB ... oo 1
Lbm ... 1
logfileforcmdd 20
log fileforcrond..................ooviiia 26

log file for httpd 16

28
log file for telnetd 23
log format for cmdd.............. 20
log format for crond 26
log format for httpd 16
log format for telnetd 23
logs of cndd sessions. 22
logs of HTTP queries 19
logs of telnetd sessionso... 25
M
MEIMOTY « ottt e e eie e e e iiee e iaeeeeans 1,11
IEMOLY USE « o vee et ee it iee e e 14
MIME types.........couiiiiniiiniiina.. 16
MIPS . e 1
modules.......... ... 14
MONIOT . .\ ottt 6
mount 13
multicast.......... .. . 6
N
name of CGI applications 17
networking............o Ll 6, 12
nfSroot 13
O
option arrayl 11
options array 13
options for cmdd L 19
options for crondl 25
options for httpd, 15
options for telnetd 23
P
Packages 2
packets for cmdd-UDP 22
PATH ..o 13
portability 1,2
POST method...........ccoviiiiiiiiiii.. 17
PowerPc 1
proc filesystem ool 13
process control 1
process management 3,4, 10
PIOCESSES .« v vt i te et et e ee st ea e 11
QUERY STRING. ... 18

Concept Index

R

read-only filesystem 13
reboot ... 5,11, 15
remount root 13
Touting. ... 6
rulesincrond Ll 26
running several cmdd servers 20
running several telnetd servers................ 24
running several web servers................... 16

S

security in cmdd 19
security in telnetd 23
services in host access 17
serving web pages........... ... 15
several web servers............. 16
shared libraries 1
shutdown..................... 5,11, 15
signal management............................ 4
size of the program 1
SOCKEt . .ot 6
SOUTCE . o vt ee et e e e e e e et e e 14
SPATC ottt 1
SParch4 1
stdout in CGI applications 18
SWAD SPACE -« e veti e it 13
system boot L 13

T

TCL.LIBRARY ...t 10
telsignal ... 4

29
TCPincmddooiiiie 21
TCP port for httpd 17
TCP port number for httpd 15
TCP port number of cmdd 19
TCP port number of telnetd 23
telnet 21
BelletC . v e 25
telnetd 23
telnetd configuration......................... 23
telnetd configuration file...................... 23
telnetd configuration files..................... 24
telnetd host access 23, 24
telnetd log file................. 23
telnetd log format 23
telnetd logs ..o 25
telnetd port Ll 23
Bime ..o 7
timeout in cmdd-UDP 20
tty management 0 e, 5
U
UDP . e 6
UDPincmddo oo 21
UDP port number of cmdd 19
UDP supportincmdd 22
UDP timeout............ 20
\%\%
web server i 15
web servers, running several 16
WEIND ..o 14

Command Index

Command Index

B

CAL ettt e e 11
Cat—f . i e e e 12
chmodt 5
13 < 11

AUP2 .. 4

fCopY .o 9
e oS P 3
Free . oo 11

ifconfig. ... il 6
T o T 10
interact..........oiiiiii e e 12
interact_oneline............... 12
AW . e e 10
isAllowedHOStviiieiie i 12

30
M
MRNOA . . .ttt e e 5
MOUNT « o ettt t ettt e et et et e e e et eeeaans 9
IV vt et e e e e e e e e 11
N
netconfig Ll 12
NEWCMANAMEovvte e eeieeeeea e 10
o o1 - Y 4
O
OULD ..ot 10
{1 7~ N 10
P
PiPE it e e e 3
PS et e 11
R
readb........ i e e 10
readl 10
TQAAW . . ottt e e 10
reboot 11
recvirom. e 6
(N 11
o1 6
S
SeNdtO e 6
sigaction..........ol 4
signal.......l 4
]2 Lo 4
sys_chmod...............l 5
SYS_AUP + oo i it 4, 17
SYS_@XEC ..ttt 3,4
SYS_FOTK . .o 3,4, 17
sys_kill. 4
Sys_mKnod.l 5
sys_nice........... ... L i, 4
SYS_0pPenttyl 5
SYyS_Pipe 3, 4
sys_signal ... 4
SYS_SYNC .« ettt e e e e e 4
sys_ttypair i i 5
sys_umask............ ... 5

Command Index

31

wait 3
waitpid........ i 3
which........ . . i 10
writeb. 10
writel. 10
Writew.o e 10

Table of Contents

Ettcl-13 ... e 1

1 Introduction............eieieiiveneneenaas 1l

1.1 Portability....... ... 1
1.2 Compilation 1
2 Features removed from Tcl-7.6.............. 2
3 Features added to Tcl-7.6 2
3.1 new commandsS. i e 3
3.2 Procedures defined in init.tel ... 10

4 Applications...........ccviviveivenneeess. 12

41 Inib .o 13
411 Boottime......... ... 13

4.1.2 Shutdown time 15

4.2 HEtpd .o 15
4.2.1 Httpd Configuration 15

4.2.2 Httpd Features............... 16

4.2.2.1 Httpd Configuration Files 16

4.2.2.2 Httpd Host Access 17

4.2.2.3 GET and POST Methods.............. 17

4224 CGlInterface......................... 17

4.2.2.5 Httpd Error Reporting 18

4226 HttpdLogs..............ocoiiiii... 19

43 Cmddand Cmdc....... ..o 19
4.3.1 Cmdd Configuration 19

4.3.2 Cmdd Features...............coooiiiiiinaia... 20

4.3.2.1 Cmdd Configuration Files 20

4.3.2.2 Cmdd Host Accessc...... 21

4323 The TCP Server...................... 21

43.24 TheUDP Server...................... 21

4325 CmddLogs...........ocoiiiiinna .. 22

433 Omdce.. ..o 22

4.4 Telnetd and Telnetc i 23
4.4.1 Telnetd Configuration.......................... 23

4.4.2 Telnetd Features............... 24

4.4.2.1 Telnetd Configuration Files............ 24

4.4.2.2 Telnetd Host Access................... 24

4.4.2.3 The Telnet Server..................... 24

4424 Telnetd Logs............ ..., 25

4.4.3 Telnetcoii i 25

45 Crond.

4.5.1 Crond Configuration...........................

4.5.2 Crond Features.................,

Concept Indexcviiiiiinnnnn..

Command Indexcovi it iiineeenenennns

30

ii

