barcode 0.97

A library for drawing bar codes
October 2001

by Alessandro Rubini (rubini@gnu.org)




Chapter 2: The Underlying Data Structure 1

Barcode tools

This file documents version 0.97 of the barcode library and sample programs (October 2001).

1 Overview

The barcode package is mainly a C library for creating bar-code output files. It also includes
a command line front-end and (in a foreseeable future) a graphic frontend.

The package is designed as a library because we think the main use for barcode-generation
tools is inside more featured applications. The library addresses bar code printing as two distinct
problems: creation of bar information and actual conversion to an output format. To this aim
we use an intermediate representation for bar codes, which is currently documented in the ‘ps.c’
source file (not in this document).

Note that the library and the accompanying material is released according to the GPL license,
not the LGPL one. A copy of the GPL is included in the distribution tarball.

2 The Underlying Data Structure

Every barcode-related function acts on a data structure defined in the ‘barcode.h’ header,
which must be included by any C source file that uses the library. The header is installed by
make install.

The definition of the data structure is included here for reference:
struct Barcode_Item {

int flags; /* type of encoding and other flags */

char *ascii; /* malloced */

char *partial; /* malloced too */

char *textinfo; /* information about text placement */

char *encoding; /* code name, filled by encoding engine */
int width, height; /* output units */

int xoff, yoff; /* output units */

int margin; /* output units */

double scalef; /* requested scaling for barcode */

int error; /* an errno-like value, in case of failure */

};
The exact meaning of each field and the various flags implemented are described in the
following sections.
Even though you won’t usually need to act on the contents of this structure, some of the
functions in the library receive arguments that are directly related to one or more of these fields.

2.1 The Fields

int flags;
The flags are, as you may suspect, meant to specify the exact behaviour of the
library. They are often passed as an argument to barcode functions and are discussed
in the next section.

char *ascii;

char *partial;

char *textinfo;

char *encoding;
These fields are internally managed by the library, and you are not expected to
touch them if you use the provided API. All of them are allocated with malloc.



Chapter 2: The Underlying Data Structure 2

int width;

int height;
They specify the width and height of the active barcode region (i.e., excluding the
white margin), in the units used to create output data (for postscript they are points,
1/72th of an inch, 0.352 mm). The fields can be either assigned to in the structure
or via Barcode_Position(), at your choice. If either value or both are left to their
default value of zero, the output engine will assign default values according to the
specified scaling factor. If the specified width is bigger than needed (according to
the scaling factor), the output barcode will be centered in its requested region. If
either the width of the height are too small for the specified scale factor, the output
bar code will expand symmetrically around the requested region.

int xoff;

int yoff;
The fields specify offset from the coordinate origin of the output engine (for
postscript, position 0,0 is the lower left corner of the page). The fields can be
either assigned to in the structure or via Barcode_Position(), at your choice. The
offset specifies where the white margin begins, not where the first bar will be printed.
To print real ink to the specified position you should set margin to 0.

int margin;
The white margin that will be left around the printed area of the bar code. The
same margin is applied to all sides of the printed area. The default value for the
margin is defined in ‘barcode.h’ as BARCODE_DEFAULT_MARGIN (10).

double scalef;
The enlarge or shrink value for the bar code over its default dimension. The width
and scalef fields interact deeply in the creation of the output, and a complete de-
scription of the issues appears later in this section.

int error;
The field is used when a barcode function fails to host an errno-like integer value.

Use of the width and scalef fields.

A width unit is the width of the thinnest bar and/or space in the chosen code; it defaults to
1 point if the output is postscript or encapsulated postscript.

Either or both the code width and the scale factor can be left unspecified (i.e., zero). The
library deals with defaults in the following way:

Both unspecified
If both the width and the scale factor are unspecified, the scale factor will default to
1.0 and the width is calculated according to the actual width of the bar code being
printed.

Width unspecified
If the width is not specified, it is calculated according to the values of scalef.

Scale factor unspecified
If the scale factor is not specified, it will be chosen so that the generated bar code
exactly fits the specified width.

Both specified
The code will be printed inside the specified region according to the specified scale
factor. It will be aligned to the left. If, however, the chosen width is too small for
the specific bar code and scaling factor, then the code will extend symmetrically to
the left and to the right of the chosen region.



Chapter 3: The Flags 3

2.2 The Intermediate Representation

The encoding functions print their output into the partial and texinfo fields of the barcode
data structure. Those fields, together with position information, are then used to generate actual
output. This is an informal description of the intermediate format.

The first char in partial tells how much extra space to add to the left of the bars. For
EAN-13, it is used to leave space to print the first digit, other codes may have ’0’ for no-extra-
space-needed.

The next characters are alternating bars and spaces, as multiples of the base dimension which
is 1 unless the code is rescaled. Rescaling is calculated as the ratio from the requested width
and the calculated width. Digits represent bar/space dimensions. Lower-case letters represent
those bars that should extend lower than the others: ’a’ is equivalent to '1’, ’b’ is '2’ and so on
up to i’ which is equivalent to ’9’. Other letters will be used for encoding-specific meanings, as
soon as I implement them.

The extinfo string is made up of fields %1f:%1f:%c separated by blank space. The first
integer is the x position of the character, the second is the font size (before rescaling) and the
char item is the character to be printed.

Both the partial and textinfo strings may include “-” or “+” as special characters (in
textinfo the char should be a standalone word). They state where the text should be printed:
below the bars (“~”, default) or above the bars. This is used, for example, to print the add-5

and add-2 codes to the right of UPC or EAN codes (the add-5 extension is mostly used in ISBN
codes).

3 The Flags

The following flags are supported by version 0.97 of the library:

BARCODE_ENCODING_MASK
The mask is used to extract the encoding-type identifier from the flags field.

BARCODE_EAN

BARCODE_UPC

BARCODE_ISBN

BARCODE_128B

BARCODE_128C

BARCODE_128

BARCODE_128RAW

BARCODE_39

BARCODE_I25

BARCODE_CBR

BARCODE_MSI

BARCODE_PLS

BARCODE_93
The currently supported encoding types: EAN (13 digits, 8 digits, 13 + 2 addon
and 13 + 5 addon), UPC (UPC-A, UPC-E, UPC-A with 2 or 5 digit addon), ISBN
(with or without the 5-digit addon), CODE128-B (the whole set of printable ASCII
characters), CODE128-C (two digits encoded by each barcode symbol), CODE128
(all ASCII values), a “raw-input” pseudo-code that generates CODE128 output,
CODE39 (alphanumeric), "interleaved 2 of 5" (numeric), Codabar (numeric plus a
few symbols), MSI (numeric) and Plessey (hex digits). See Chapter 6 [Supported
Encodings|, page 7.



Chapter 4: Functions Exported by the Library 4

BARCODE_ANY

This special encoding type (represented by a value of zero, so it will be the default)
tells the encoding procedure to look for the first encoding type that can deal with
a textual string. Therefore, a 11-digit code will be printed as UPC (as well as
6-digit, 11+2 and 11+5), a 12-digit (or 7-digit, or 12+2 or 12+5) as EANI13, an
ISBN code (with or without hyphens, with or without add-5) will be encoded in
its EAN13 representation, an even number of digits is encoded using CODE128C
and a generic string is encoded using CODE128B. Since code-39 offers a much
larger representation for the same text string, codel28-b is preferred over code39
for alphanumeric strings.

BARCODE_NO_ASCII
Instructs the engine not to print the ascii string on output. By default the bar code
is accompanied with an ascii version of the text it encodes.

BARCODE_NO_CHECKSUM
Instructs the engine not to add the checksum character to the output. Not all the

encoding types can drop the checksum; those where the checksum is mandatory (like
EAN and UPC) just ignore the flag.

BARCODE_QUTPUT_MASK
The mask is used to extract the output-type identifier from the flags field.

BARCODE_QUT_PS

BARCODE_QOUT_EPS

BARCODE_QOUT_PCL

BARCODE_QUT_PCL_III
The currently supported encoding types: full-page postscript and encapsulated
postscript; PCL (print command language, for HP printers) and PCL-III (same
as PCL, but uses a font not available on older printers).

BARCODE_QUT_NOHEADERS
The flag instructs the printing engine not to print the header and footer part of the
file. This makes sense for the postscript engine but might not make sense for other
engines; such other engines will silently ignore the flag just like the PCL backend
does.

4 Functions Exported by the Library

The functions included in the barcode library are declared in the header file barcode.h.
They perform the following tasks:

struct Barcode_Item *Barcode_Create(char *text);
The function creates a new barcode object to deal with a specified text string. It
returns NULL in case of failure and a pointer to a barcode data structure in case of
success.

int Barcode_Delete(struct Barcode_Item *bc);
Destroy a barcode object. Always returns 0 (success)

int Barcode_Encode (struct Barcode_Item *bc, int flags);
Encode the text included in the bc object. Valid flags are the encoding type (other
flags are ignored) and BARCODE NO_CHECKSUM (other flags are silently ig-
nored); if the flag argument is zero, bc->flags will apply. The function returns 0
on success and -1 in case of error. After successful termination the data structure
will host the description of the bar code and its textual representation, after a failure
the error field will include the reason of the failure.



Chapter 5: The barcode frontend program 5

int Barcode_Print(struct Barcode_Item *bc, FILE *f, int flags);
Print the bar code described by bc to the specified file. Valid flags are the out-
put type, BARCODE_NO_ASCII and BARCODE_QUT_NOHEADERS, other flags are ignored.
If any of these flags is zero, it will be inherited from bc->flags which therefore
takes precedence. The function returns 0 on success and -1 in case of error (with
bc->error set accordingly). In case of success, the bar code is printed to the spec-
ified file, which won’t be closed after use.

int Barcode_Position(struct Barcode_Item *bc, int wid, int hei, int xoff, int yoff,
double scalef);
The function is a shortcut to assign values to the data structure.

int Barcode_Encode_and_Print (char *text, FILE *f, int wid, int hei, int xoff, int
yoff, int flags);
The function deals with the whole life of the barcode object by calling the other
functions; it uses all the specified flags.

int Barcode_Version(char *versionname) ;
Returns the current version as an integer number of the form major * 10000 + minor
* 100 + release. Therefore, version 1.03.5 will be returned as 10305 and version 0.53
as 5300. If the argument is non-null, it will be used to return the version number as
a string. Note that the same information is available from two preprocessor macros:
BARCODE_VERSION (the string) and BARCODE_VERSION_INT (the integer number).

5 The barcode frontend program

The barcode program is a front-end to access some features of the library from the command
line. It is able to read user supplied strings from the command line or a data file (standard
input by default) and encode all of them.

5.1 The Command Line

barcode accepts the following options:

--help or -h
Print a usage summary and exit.

-i filename
Identify a file where strings to be encoded are read from. If missing (and if -b is
not used) it defaults to standard input. Each data line of the input file will be used
to create one barcode output.

-o filename
Output file. It defaults to standard output.

-b string Specify a single “barcode” string to be encoded. The option can be used multiple
times in order to encode multiple strings (this will result in multi-page postscript
output or a table of barcodes if -t is specified). The strings must match the encoding
chosen; if it doesn’t match the program will print a warning to stderr and generate
“blank” output (although not zero-length). Please note that a string including
spaces or other special characters must be properly quoted.

-e encoding
encoding is the name of the chosen encoding format being used. It defaults to the
value of the environment variable BARCODE_ENCODING or to auto detection if the
environment is also unset.



Chapter 6: Supported Encodings 6

-g geometry

The geometry argument is of the form “[<width> x <height>] [+ <zmargin> + <ymar-
gin>]” (with no intervening spaces). Unspecified margin values will result in no
margin; unspecified size results in default size. The specified values represent print
points by default, and can be inches, millimeters or other units according to the —u
option or the BARCODE_UNIT environment variable. The argument is used to place
the printout code on the page. Note that an additional white margin of 10 points
is added to the printout. If the option is unspecified, BARCODE_GEOMETRY is looked
up in the environment, if missing a default size and no margin (but the default 10
points) are used.

-t table-geometry

Used to print several barcodes to a single page, this option is meant to be used to
print stickers. The argument is of the form “<columns> x <lines> [+ <leftmargin> +
<bottommargin> [~ <rightmargin> [~ <topmargin>]]]” (with no intervening spaces);
if missing, the top and right margin will default to be the same as the bottom
and left margin. The margins are specified in print points or in the chosen unit
(see —u below). If the option is not specified, BARCODE_TABLE is looked up in the
environment, otherwise no table is printed and each barcode will get its own page.

-m margin(s)

Specifies an internal margin for each sticker in the table. The argument is of the form
“<zmargin>,<ymargin>” and the margin is applied symmetrically to the sticker. If
unspecified, the environment variable BARCODE_MARGIN is used or a default internal
margin of 10 points is used.

“Numeric” output: don’t print the ASCII form of the code, only the bars.

No checksum character (for encodings that allow it, like code 39, other codes, like
UPC or EAN, ignore this option).

Encapsulated postscript (default is normal postscript). When the output is gener-
ated as EPS only one barcode is encoded.

PCL output. Please note that the Y direction goes from top to bottom for PCL,
and the origin for an image is the top-left corner instead of the bottom-left

-p pagesize

-u unit

Specify a non-default page size. The page size can be specified in millimeters,
inches or plain numbers (for example: "210x297mm", "8.5x11in", "595x842"). A
page specification as numbers will be interpreted according to the current unit spec-
ification (see —u below). If libpaper is available, you can also specify the page size
with its name, like "A3" or "letter" (libpaper is a standard component of De-
bian GNU/Linux, but may be missing elsewhere). The default page size is your
system-wide default if libpaper is there, A4 otherwise.

Choose the unit used in size specifications. Accepted values are “mm”, “cm”, “in”
and “pt”. By default, the program will check BARCODE_UNIT in the environment,
and assume points otherwise (this behaviour is compatible with 0.92 and previous
versions. If —u appears more than once, each instance will modified the behaviour
for the arguments at its right, as the command line is processes left to right. The
program internally works with points, and any size is approximated to the nearest
multiple of one point. The —u option affect -g (geometry), -t (table) and -p (page
size).



Chapter 6: Supported Encodings 7

6 Supported Encodings

The program encodes text strings passed either on the command line (with -b) or retrieved
from standard input. The text representation is interpreted according to the following rules.
When auto-detection of the encoding is enabled (i.e, no explicit encoding type is specified),
the encoding types are scanned to find one that can digest the text string. The following list
of supported types is sorted in the same order the library uses when auto-detecting a suitable
encoding for a string.

EAN

UPC

ISBN

code 128-B

code 128-C

The EAN frontend is similar to UPC; it accepts strings of digits, 12 or 7 characters
long. Strings of 13 or 8 characters are accepted if the provided checksum digit is
correct. I expect most users to feed input without a precalculated checksum, though.
The add-2 and add-5 extension are accepted for both the EAN-13 and the EAN-8
encodings. The following are example of valid input strings: “123456789012” (EAN-
13), “1234567890128” (EAN-13 wih checksum), “1234567” (EAN-8), “12345670
12345” (EAN-8 with checksum and add-5), “123456789012 12” (EAN-13 with add-
2), 123456789012 12345” (EAN-13 with add-5).

The UPC frontend accepts only strings made up of digits (and, if a supplemental
encoding is used, a blank to separate it). It accepts strings of 11 or 12 digits (UPC-
A) and 6 or 7 or 8 digits (UPC-E).

The 12th digit of UPC-A is the checksum and is added by the library if not specified
in the input; if it is specified, it must be the right checksum or the code is rejected
as invalid. For UPC-E, 6 digit are considered to be the middle part of the code,
a leading 0 is assumed and the checksum is added; 7 digits are either considered
the initial part (leading digit 0 or 1, checksum missing) or the final part (checksum
specified, leading 0 assumed); 8 digits are considered to be the complete code, with
leading 0 or 1 and checksum. For both UPC-A and UPC-E, a trailing string of 2
digits or 5 digits is accepted as well. Therefore, the following are examples of valid
strings that can be encoded as UPC: “01234567890” (UPC-A) “012345678905”
(UPC-A with checksum), “012345” (UPC-E), “01234567890 12” (UPC-A, add-2)
and “01234567890 12345” (UPC-A, add-5), “0123456 12” (UPC-E, add-2). Please
note that when setting BARCODE_ANY to autodetect the encoding to be used, 12-digit
strings and 7-digit strings will always be identified as EAN. This because I expect
most user to provide input without a checksum. If you need to specify UPC-with-
checksum as input you must explicitly set BARCODE_UPC as a flag or use —e upc on
the command line.

ISBN numbers are encoded as EAN-13 symbols, with an optional add-5 trailer.
The ISBN frontend of the library accepts real ISBN numbers and deals with any
hyphen and, if present, the ISBN checksum character before encoding data. Valid
representations for ISBN strings are for example: “1-56592-292-1", “3-89721-122-
X” and “3-89721-122-X 06900”.

This encoding can represent all of the printing ASCII characters, from the space
(32) to DEL (127). The checksum digit is mandatory in this encoding.

The “C” variation of Code-128 uses Code-128 symbols to represent two digits at a
time (Code-128 is made up of 104 symbols whose interpretation is controlled by the
start symbol being used). Code 128-C is thus the most compact way to represent
any even number of digits. The encoder refuses to deal with an odd number of
digits because the caller is expected to provide proper padding to an even number of
digits. (Since Code-128 includes control symbols to switch charset, it is theoretically
possible to represent the odd digit as a Code 128-A or 128-B symbol, but this tool
doesn’t currently implement this option).



Chapter 6: Supported Encodings 8

code 128 raw

code 39

Code-128 output represented symbol-by-symbol in the input string. To override part
of the problems outlined below in specifying codel28 symbols, this pseudo-encoding
allows the used to specify a list of codel28 symbols separated by spaces. Each
symbol is represented by a number in the range 0-105. The list should include the
leading character.The checksum and the stop character are automatically added by
the library. Most likely this pseudo-encoding will be used with BARCODE_NO_ASCII
and some external program to supply the printed text.

The code-39 standard can encode uppercase letters, digits, the blank space, plus,
minus, dot, star, dollar, slash, percent. Any string that is only composed of such
characters is accepted by the code-39 encoder. To avoid loosing information, the
encoder refuses to encode mixed-case strings (a lowercase string is nonetheless ac-
cepted as a shortcut, but is encoded as uppercase).

interleaved 2 of 5

code 128

Codabar

Plessey

This encoding can only represent an even number of digits (odd digits are repre-
sented by bars, and even digits by the interleaving spaces). The name stresses the
fact that two of the five items (bars or spaces) allocated to each symbol are wide,
while the rest are narrow. The checksum digit is optional (can be disabled via
BARCODE_NO_CHECKSUM). Since the number of digits, including the checksum, must
be even, a leading zero is inserted in the string being encoded if needed (this is
specifically stated in the specs I have access to).

Automatic selection between alphabet A, B and C of the Code-128 standard. This
encoding can represent all ASCII symbols, from 0 (NUL) to 127 (DEL), as well as
four special symbols, named F1, F2, F3, F4. The set of symbols available in this
encoding is not easily represented as input to the barcode library, so the following
convention is used. In the input string, which is a C-language null-terminated string,
the NUL char is represented by the value 128 (0x80, 0200) and the F1-F4 characters
are represented by the values 193-196 (0xc1-0xc4, 0301-0304). The values have been
chosen to ease their representation as escape sequences.

Since the shell doesn’t seem to interpret escape sequences on the command line,
the "-b" option cannot be easily used to designate the strings to be encoded. As a
workaround you can resort to the command echo, either within backticks or used
separately to create a file that is then fed to the standard-input of barcode — assuming
your echo command processes escape sequences. The newline character is especially
though to encode (but not impossible unless you use a csh variant.

These problems only apply to the command-line tool; the use of library functions
doesn’t give any problem. In needed, you can use the “code 128 raw” pseudo-
encoding to represent codel28 symbols by their numerical value. This encoding is
used late in the auto-selection mechanism because (almost) any input string can be
represented using codel28.

Codabar can encode the ten digits and a few special symbols (minus, plus, dollar,
colon, bar, dot). The characters “A”, “B”, “C” and “D” are used to represent four
different start/stop characters. The input string to the barcode library can include
the start and stop characters or not include them (in which case “A” is used as start
and “B” as stop). Start and stop characters in the input string can be either all
lowercase or all uppercase and are always printed as uppercase.

Plessey barcodes can encode all the hexadecimal digits. Alphabetic digits in the
input string must either be all lowercase or all uppercase. The output text is always
uppercase.



Chapter 7: PCL Output 9

MSI MSI can only encode the decimal digits. While the standard specifies either one
or two check digits, the current implementation in this library only generates one
check digit.

code 93 The code-93 standard can natively encode 48 different characters, including upper-
case letters, digits, the blank space, plus, minus, dot, star, dollar, slash, percent,
as well as five special characters: a start/stop delimiter and four "shift characters"
used for extended encoding. Using this "extended encoding" method, any standard
7-bit ASCII character can be encoded, but it takes up two symbol lengths in bar-
code if the character is not natively supported (one of the 48). The encoder here
fully implements the code 93 encoding standard. Any characters natively supported
(A-Z, 0-9, ".+-/$&%") will be encoded as such - for any other characters (such as
lower case letters, brackets, parentheses, etc.), the encoder will revert to extended
encoding. As a note, the option to exclude the checksum will eliminate the two
modulo-47 checksums (called C and K) from the barcode, but this probably will
make it unreadable by 99% of all scanning systems. These checksums are specified
to be used at the firmware level, and their absence will be interpreted as an invalid
barcode.

7 PCL Output

While the default output is Postscript (possibly EPS), and Postscript can be postprocessed
to almost anything, it is sometimes desirable to create output directly usable by the specific
printer at hand. PCL is currently supported as an output format for this reason. Please note
that the Y coordinate for PCL goes from top to bottom, while for Postscript it goes from bottom
to top. Consistently, while in Postscript you specify the bottom-left corner as origin, for PCL
you specify the top-left corner.

Barcode output for PCL Printers (HP LaseJet and compatibles), was developed using PCL5
Reference manuals from HP. that really refers to these printers:

e LaserJet ITI, ITT P, TIT D, TIT Si,
e LaserJet 4 family

e LaserJet 5 family

e LaserJet 6 family

e Color LaserJet

e Deskjet 1200 and 1600.

However, barcode printing uses a very small subset of PCL, probably also LaserJet II should
print it without problem, but the resulting text may be horrible.

The only real difference from one printer to another really depends on which font are available
in the printer, used in printing the label associated to the bars (if requested).

Earlier Laserjet supports only bitmaps fonts, so these are not "scalable". (Ljet II 7), Also
these fonts, when available, have a specified direction, and not all of them are available in both
Portrait and Landscape mode.

From LaserJet 4 series, (except 4L /5L that are entry-level printers), Arial scalable font should
be available, so it’s the "default font" used by this program.

LaserJet III series printers (and 4L, 5L), don’t feature "Arial" as a resident font, so you
should use BARCODE_OUT_PCL_III instead of BARCODE_OUT_PCL., and font the font used will be
"Univers" instead of "Arial".

Results on compatible printers, may depend on consistency of PCL5 compatibility, in doubt,
try BARCODE_OUT_PCL_III

PJL commands are not used here, as it’s not very compatible.

Tested Printers:



Chapter 8: Bugs and Pending Issues. 10

e Hp LaserJet 4050

e Hp LaserJet 2100

e Epson N-1200 emul PCL

e Toshiba DP2570 (copier) + PCL option

e Epson EPL-7100 emul. HP Laserjet II: bars print fine but text is bad.

8 Bugs and Pending Issues.

The current management of borders/margins is far from optimal. The “default” margin
applied by the library interferes with the external representation, but I feel it is mandatory
to avoid creating barcode output with no surrounding white space (the problem is especially
relevant for EPS output).

EAN-128 is not (yet) supported. I plan to implement it pretty soon and then bless the
package as version 1.0.



Table of Contents

Barcodetools................o i, 1
1 OVervVieW. ...ttt iieeeeenaaneeeeennnnnnnns 1
2 The Underlying Data Structure ............... 1
21 The Fields........omiii e e e 1

Use of the width and scalef fields. .......................... 2

2.2 The Intermediate Representation ............................. 3

3 TheFlags......ovviiiiiiiieeiierinsninnnnnnns 3
4 Functions Exported by the Library ............ 4
5 The barcode frontend program................. 5
5.1 The Command Line ........... ... .. .. 5

6 Supported Encodings ................iuu... 7
7 PCLOutput .......coiiiiiiiiiiiinennnannnns 9
8 Bugs and Pending Issues. .................... 10



