
Varnish Cache

Emanuele Rocca

ZenMate DevOps Day 2

Web performance

300x - 1000x speedup

Outline

I Introduction

I Design principles

I Object storage

I Architecture

I Conclusions

Varnish 101

I Web server accelerator AKA caching HTTP reverse proxy

I Really fast. Delivery speedup 300x - 1000x

I Client <-> Varnish <-> Backend

Caching

I Cached responses are two order of magnitude faster

I Maximize cache hits

I Contents are stored in cache according to the backend
response (Cache-Control header)

I Caching behavior can be changed using policies written in
VCL, the Varnish Configuration Language

Basic config

/etc/default/varnish

DAEMON_OPTS="-a :80 \

-T localhost:6082 \

-f /etc/varnish/example.vcl \

-S /etc/varnish/secret \

-s malloc,256m"

Basic config

/etc/varnish/example.vcl:

vcl 4.0;

backend example {

.host = "www.varnish-cache.org";

.port = "80";

}

VCL vs. Settings

I The configuration is written in VCL

I Not switching settings on or off

I It is transformed into C code, built, loaded and executed upon
varnish startup

I Writing policies on how incoming traffic should be handled

varnishadm

I Stopping and starting the cache process
I Loading VCL
I Adjusting the built-in load balancer
I Invalidating cached content

varnishlog

I Varnish does not log to disk
I Logs are streamed to a chunk of memory
I varnishlog allows to connect to the stream and inspect the logs

Design principles

I Focus on performance and flexibility

I Design for today

Performance and flexibility

I Multithreaded

I Log to memory to reduce lock-contention between threads

I Binary search tree to quickly store and retrieve cached items

Design for today

I 64-bit architectures, multi-core scalability, advanced OS
features

I Leave it to the OS to decide where memory is. Just request a
large chunk of memory

I epoll instead of select(2), poll(2)

epoll

I On high loads the one process/thread per connection
architecture does not provide good performance

I epoll(7), introduced in Linux 2.6

I O(1) instead of O(n) to monitor n file descriptors

I http://kovyrin.net/2006/04/13/epoll-asynchronous-network-
programming/

Object storage

I Objects are stored in memory. References are kept in a tree,
not in a hash table. Each node has a key

I Keys are potentially arbitrarily long. Users can choose what to
use as a key

Default key

sub vcl_hash {

hash_data(req.url);

if (req.http.host) {

hash_data(req.http.host);

} else {

hash_data(server.ip);

}

return (lookup);

}

Problems with long keys

I Storage requirements

I The tree can quickly become unbalanced

Solution

I Keys are cryptographically hashed with SHA256 to ensure
compression and randomness

I Anything can be used as a key (user identification, cookies. . .)

I Simple tree implementations can be used without worring
about inbalance

Architecture

The varnishd program spawns two processes: manager and worker.

root 14730 Ss 17:59 0:00 /usr/sbin/varnishd

nobody 14731 Sl 17:59 0:00 _ /usr/sbin/varnishd

Varnish manager

I Talks to the administrator

I Runs as root in order to open privileged ports

I Compiles the VCL program to be executed by the worker

Varnish worker

I Child of manager with minimal permissions

I Does all the actual work with HTTP traffic

I Restarted by the manager if it dies

VCL programs

I Can be compiled and executed at any time

I No need to restart the worker

I No missed HTTP requests

Shared memory

I One segment of shared memory used to report and log
activities and status

I Another segment for statistics and counters. Real-time, down
to microsecond monitoring of cache hit-rate, resource usage
and performance indicating metrics

Conclusions

I Varnish is a very efficient and flexible web server accelerator

I Configured through a language called VCL. Configuration
changes do not require restarts

I Data is stored in virtual memory

I Designed for today

I Next steps: learn VCL and play with it!

