Bigtable

A Distributed Storage System
for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemaway,
Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes,
Robert E. Gruber

Google, Inc.

Presented by: Emanuele Rocca

What is Bigtable?

BIG

TABLE

What is Bigtable?

Let's start saying what Bigtable is NOT

 Not a database
 Not a sharded database
 Not a distributed hashtable

What is Bigtable?

A distributed,
persistent, sorted,
associlative array

(row:string, column: string, time:int64) — string

Why did they implement it?
Quoting Jeff Dean:

* Applications at Google place very different
demands on the storage system

* Handle petabytes of data
» Scale to thousands of commodity servers

e FUun

Outline

 Data model

o Architecture

e Use cases
 Performance evaluation
 Great excitement

Data mode|

Remem

Data Model

ner the Relational Model?

Activity | Activity
Code | Name

23 Patching

24 Overlay

25 Crack Sealing

Activity

Date Code Route No.
011201 24 |-95
0111501 23 |-495
02/08/01| 24 |-66

& Key = 24

Activity

Code Date Route No.
| 24 [o1712/01 |1-95
24 |02/08/01 |1-66

Data Model

Forget it!
ivity | Activity
Name
23 Patching
24 lay
25 Crack Sgling Key
1e Date Route No.
24 01/12/01 |I-95
02/08/01 |I-66
Activit
Date Cod Route No.
01/12/01 -95
01/1 23 |-495
8/01| 24 |-66

Data Model

Simpler than the Relational Model:
Dynamic control over data layout

10

Data Model

"contents:” "anchor:.cnnsi.com” "anchor:my.look.ca"
| : | . . |

o i) e e ei— Py oy B i P i i i o i S i il - s i ' e

! . ;_.:'][ﬂ’]lr'_--,:_. | (| | | " " |

"com.cnn.www" — - h|||| < t.° | "CNN" }* ty CNN.com"” |- g
I ’ : :

_ < tm .. i____] lh_ S T S B

: | : .

Indexed by: row key, column key, timestamp

11

Data Model

Data is maintained in lexicographic order by row key

 Allows (forces) developers to reason about the locality
properties of their data

* Reads of short row ranges are efficient and require
communication with a small number of machines

12

Data Model

Row range for a table dynamically partitioned

» Partitions are called TABLETS
* 1 GFS file per tablet
» Unit of distribution and load balancing

13

Data Model

* Reads/writes under a single row key are atomic

* Timestamps can be used to store multiple
versions of the same item: garbage collection

14

Architecture

Architecture

Building blocks:

* Google File System

» Cluster scheduling system

* Chubby: High available, persistent, distributed

lock service

16

Architecture

1 master server,
N tablet servers

Architecture

Bigtable client
Bigtable Cell Bigtable client
metadata ops .
/ library
Bigtable master
performs metada-ta ops + ol it Open()
load balancing
. \ 4
Bigtable tablet server Bigtable tablet server| ... Bigtable tablet server
serves data serves data serves data
Cluster scheduling system GFS Lock servic

holds metadata,

handles failover, monitoring holds tablet data, logs handles master-election

18

Architecture

The tablet server

* Can be dynamically added or removed from a
cluster according to changes in the workload

 Manages a set of N tablets (10 < N < 1000)

e Handles reads / writes to rows located In Its
tablets

» Splits tablets that have grown too large

19

Architecture

The master server
» Assigns tablets to tablets servers
» Detects when a tablet server joins / leaves

e Balances tablet -~ server load

20

Architecture

The poor master is usually...
Quite bored.

21

Use Cases

Use Cases

* Web indexing

 Gmall

* Youtube

» Google Maps, Earth, Reader, Code

* Google App Engine

23

Performance
Evaluation

Performance Evaluation

Experimental Setup

N tablet servers
 Huge GFS cell: 1786 machines, 2x 400 GB
disks each

25

Performance Evaluation

Benchmarks

* Sequential write
» Sequential read
« Random write

e Random read

e Scan

26

Performance Evaluation

Bigger values are better

~
<

IIIIIlIIlIIIIIIII!IIIIIIIIIIIIIIIIIIIII
X

®— scans
— #— - random reads (mem)
¢— random writes
— -A— - sequential reads

<

Values read/written per second

sequential writes -
2M - —+- - random reads
_ — A
IM — == _»
—————————————————————— +
N (rrrrr ey [rrEr (e T
100 200 300 400 500

Number of tablet servers

Performance Evaluation

* Scans are superfast: RPC overhead is amortized
« Random reads from memory also scale very well

« Random reads from GFS show the worst scaling

28

Why did they implement it?
Quoting Jeff Dean:

* Applications at Google place very different
demands on the storage system

* Handle petabytes of data
» Scale to thousands of commodity servers

e FUun

29

Conclusions

Bigtable scales to petabytes of data across
thousands of commodity Linux servers

Developers can have an hard time adapting to
different models

Google's structured storage needs are satisfied

30

class Person(db.Expandaol:
name = db.5tringPropertyl)
surname = db.S5tringPropertyl])

def person_example():
Bna = Person(name="Emanuele”, surname="Rocca")
ema.wears_glasses = True

john = FPersoniname="John", surname="Smith™)
john.comes_from = "Malta”

ema.put()
john.put()

for person in Person.alli):
print person.name. person.surname

print Person.all().filter("wears_glasses”, True).count(), "with glasses”
print Person.all().filter{"comes_from”, "Malta”™).count(), "from Malta”
print Person.all().filter("comes_from™, "Italy”).count(), "from Italy”

"feeds/models.py’ 1Z21L, 3H66C written

help -» Python's own help system.
ob ject? -» Details about 'object’. ?object also works, 7?7 prints more,

[[1]: 1mport feeds.models

[[2]: feeds.models.person_examplefl]
Emanuele Eocca

John 5Smith

1 with glasses

1 from Malta

H from [taly

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

