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What is Bigtable?

BIG

TABLE



What is Bigtable?

Let's start saying what Bigtable is NOT

 Not a database
 Not a sharded database
 Not a distributed hashtable



What is Bigtable?

A distributed,
persistent, sorted,
associlative array

(row:string, column: string, time:int64) — string



Why did they implement it?
Quoting Jeff Dean:

* Applications at Google place very different
demands on the storage system

* Handle petabytes of data
» Scale to thousands of commodity servers

e FUun



Outline

 Data model

o Architecture

e Use cases
 Performance evaluation
 Great excitement
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Remem

Data Model

ner the Relational Model?

Activity | Activity
Code | Name

23 Patching

24 Overlay

25 Crack Sealing

Activity

Date Code Route No.
011201 24 |-95
0111501 23 |-495
02/08/01| 24 |-66

& Key = 24

Activity

Code Date Route No.
| 24 [o1712/01 |1-95
24 |02/08/01 |1-66




Data Model

Forget it!
ivity | Activity
Name
23 Patching
24 lay
25 Crack Sgling Key
1e Date Route No.
24 01/12/01 |I-95
02/08/01 |I-66
Activit
Date Cod Route No.
01/12/01 -95
01/1 23 |-495
8/01| 24 |-66




Data Model

Simpler than the Relational Model:
Dynamic control over data layout
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Data Model
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Indexed by: row key, column key, timestamp
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Data Model

Data is maintained in lexicographic order by row key

 Allows (forces) developers to reason about the locality
properties of their data

* Reads of short row ranges are efficient and require
communication with a small number of machines
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Data Model

Row range for a table dynamically partitioned

» Partitions are called TABLETS
* 1 GFS file per tablet
» Unit of distribution and load balancing
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Data Model

* Reads/writes under a single row key are atomic

* Timestamps can be used to store multiple
versions of the same item: garbage collection
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Architecture



Architecture

Building blocks:

* Google File System

» Cluster scheduling system

* Chubby: High available, persistent, distributed

lock service

16



Architecture

1 master server,
N tablet servers



Architecture

Bigtable client
Bigtable Cell Bigtable client
metadata ops .
/ library
Bigtable master
performs metada-ta ops + ol it Open()
load balancing
. \ 4
Bigtable tablet server Bigtable tablet server| ... Bigtable tablet server
serves data serves data serves data
Cluster scheduling system GFS Lock servic

holds metadata,

handles failover, monitoring holds tablet data, logs handles master-election
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Architecture

The tablet server

* Can be dynamically added or removed from a
cluster according to changes in the workload

 Manages a set of N tablets (10 < N < 1000)

e Handles reads / writes to rows located In Its
tablets

» Splits tablets that have grown too large
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Architecture

The master server
» Assigns tablets to tablets servers
» Detects when a tablet server joins / leaves

e Balances tablet -~ server load
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Architecture

The poor master is usually...
Quite bored.
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Use Cases



Use Cases

* Web indexing

 Gmall

* Youtube

» Google Maps, Earth, Reader, Code

* Google App Engine
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Performance
Evaluation



Performance Evaluation

Experimental Setup

N tablet servers
 Huge GFS cell: 1786 machines, 2x 400 GB
disks each
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Performance Evaluation

Benchmarks

* Sequential write
» Sequential read
« Random write

e Random read

e Scan
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Performance Evaluation

Bigger values are better
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Performance Evaluation

* Scans are superfast: RPC overhead is amortized
« Random reads from memory also scale very well

« Random reads from GFS show the worst scaling
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Why did they implement it?
Quoting Jeff Dean:

* Applications at Google place very different
demands on the storage system

* Handle petabytes of data
» Scale to thousands of commodity servers

e FUun
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Conclusions

Bigtable scales to petabytes of data across
thousands of commodity Linux servers

Developers can have an hard time adapting to
different models

Google's structured storage needs are satisfied
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class Person(db.Expandaol:
name = db.5tringPropertyl)
surname = db.S5tringPropertyl])

def person_example():
Bna = Person(name="Emanuele”, surname="Rocca")
ema.wears_glasses = True

john = FPersoniname="John", surname="Smith™)
john.comes_from = "Malta”

ema.put()
john.put()

for person in Person.alli):
print person.name. person.surname

print Person.all().filter("wears_glasses”, True).count(), "with glasses”
print Person.all().filter{"comes_from”, "Malta”™).count(), "from Malta”
print Person.all().filter("comes_from™, "Italy”).count(), "from Italy”

"feeds/models.py’ 1Z21L, 3H66C written

help -» Python's own help system.
ob ject? -» Details about 'object’. ?object also works, 7?7 prints more,

[ [1]: 1mport feeds.models

[ [2]: feeds.models.person_examplefl]
Emanuele Eocca

John 5Smith

1 with glasses

1 from Malta

H from [taly
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