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How does Wikipedia end up on my
screen?
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Outline

▶ Wikimedia Foundation
▶ CDN Ingredients
▶ In Practice
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Wikimedia Foundation
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Wikimedia Foundation

Non-profit organization focusing on free, open-content,
wiki-based Internet projects.
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WMF: what it does NOT do

▶ Edit Wikipedia
▶ Use advertisement or VC money
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WMF: what it does

▶ Owns the wikipedia.org domain
▶ Raises money through donations
▶ Controls the servers (19 Site Reliability Engineers)
▶ Develops and deploys software (66 SWE)
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Alexa Top Websites

Company Revenue Employees Server count
Google $89.4 billion 73,992 2,000,000+
Facebook $40.6 billion 25,105 180,000+
Baidu $13.4 billion 46,391 100,000+
Wikimedia $81.9 million 304 1,000+
Yahoo $1.31 billion 8,500 100,000+
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Traffic Volume

▶ Average: ~100k/s, peaks: ~140k/s
▶ Can handle more for huge-scale DDoS attacks
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DDoS Example

Source: jimieye from flickr.com (CC BY 2.0)
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The Wikimedia Family
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Values

▶ Deeply rooted in the free culture and free software
movements

▶ Infrastructure built exclusively with free and
open-source components

▶ Design and build in the open, together with
volunteers
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Build In The Open

▶ github.com/wikimedia
▶ gerrit.wikimedia.org
▶ phabricator.wikimedia.org
▶ grafana.wikimedia.org
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CDN Ingredients
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How does Wikipedia end up on my
screen?
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Thank you! Any questions?
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CDN Ingredients

▶ HTTP Caching
▶ Load balancing
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Caching proxies

Reduce application server load
by caching HTTP responses
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The devil is in the detail

The cache receives multiple requests for the same page
before receiving a response from the server.

What should it do?
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The devil is in the detail

How about your bank account!
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Response headers

Cache-Control: private
▶ The response is intended for a single user
▶ Shared caches must not store it
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Paper: Hypertext Transfer Protocol
(HTTP/1.1): Caching

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
Ed.,

Hypertext Transfer Protocol (HTTP/1.1): Caching

RFC 7234, June 2014.
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Load balancing

▶ One caching proxy is of course not enough
▶ Scalability
▶ High Availability

▶ We need to deploy multiple cache servers
▶ Traffic should be distributed among them somehow

evenly
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Load balancing
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Load balancing

▶ Load balancers can work at different layers of the
networking stack

▶ L4: backend selection based on layer 3/4
information

▶ L7: backend selection based on (guess what) layer 7
information
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Load balancing: backend selection

L7 HTTP load balancer
We want all requests for the document /foobar to end
up on a given cache proxy
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Load balancing: backend selection

▶ Hash the request url!
▶ In traditional hash tables, mapping is defined by a

modular operation
▶ Changing the number of slots causes nearly all keys

to be remapped
▶ What happens if servers come and go?
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Paper: Consistent Hashing

Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin,
D., and Panigrahy, R.

Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World
Wide Web.

In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (El Paso, TX, May 1997)
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Consistent Hashing

▶ Map each object to a point on a circle
▶ Map each bucket to many pseudo-random points on

the circle
▶ To find an object’s bucket, find the object on the

circle, and walk clockwise till you find the bucket
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Blue: 1, 5
Red: 2, 4
Green: 3
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Consistent Hashing

▶ If we remove a bucket, the items that mapped to it
must be redistributed among the remaining ones

▶ Values mapping to other buckets will still do so and
do not need to be moved
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Red: 2, 4 -> Red: 2, 4, 1, 5
Green: 3 -> Green: 3
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A day in the life of an
HTTP request
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A day in the life of an HTTP request

▶ Geographic DNS Routing
▶ L4 Load Balancing
▶ TCP connection establishment
▶ TLS Termination
▶ HTTP Caching
▶ L7 Load Balancing

42



Geographic DNS routing

We get sent to the closest data centre
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Cluster Map

eqiad: Ashburn, Virginia - cp10xx
codfw: Dallas, Texas - cp20xx
esams: Amsterdam, Netherlands - cp30xx
ulsfo: San Francisco, California - cp40xx
eqsin: Singapore - cp50xx
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Cache cluster

▶ Load balancers running Linux Virtual Server
▶ HTTP cache proxies running Varnish in memory

(faster, smaller)
▶ HTTP cache proxies running Varnish on disk

(slower, much larger)
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▶ L4 load balancing, backend selection based on IP
▶ Effective cache size: ~avg(mem size)
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TCP Connection Establishment

▶ SYN
▶ SYN/ACK
▶ ACK
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Paper: TCP Fast Open

S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B.
Raghavan.

TCP Fast Open.

In Proc. of the International Conference on emerging
Networking EXperiments and Technologies (CoNEXT),
2011.
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TCP Fast Open

▶ Speed of light cannot be changed
▶ The number of roundtrips can
▶ Allow SYN packets to carry data
▶ Cookie used to authenticate client

51



52



53



Cache miss
▶ L7 load balancing, backend selection based on request URL▶ Effective cache size: ~sum(disk size) 54



Cache hit 55
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Load balancing: direct routing

▶ All requests go through the load balancer
▶ Responses go straight to the client
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Load balancing: direct routing

That’s a particularly smart idea for HTTP traffic.
58



Paper: Linux Virtual Server

W. Zhang.

Linux Virtual Server for Scalable Network Services.

In Proceedings of the Linux Symposium, July 2000.
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Conclusions: you know more things

▶ Wikipedia is one of the largest websites in the world
▶ It is run by a non-profit called Wikimedia

Foundation
▶ HTTP Caching
▶ L4/L7 Load Balancing
▶ Consistent Hashing
▶ Geographic DNS Routing
▶ TCP Fast Open
▶ LVS Direct Routing
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The devil is in the detail

Request coalescing with uncacheable responses
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