
Wikipedia’s CDN
Research, Engineering, Free Software

Emanuele Rocca
Wikimedia Foundation

March 26th 2018
1

How does Wikipedia end up on my
screen?

1

Outline

▶ Wikimedia Foundation
▶ CDN Ingredients
▶ In Practice

2

Wikimedia Foundation

3

Wikimedia Foundation

Non-profit organization focusing on free, open-content,
wiki-based Internet projects.

4

WMF: what it does NOT do

▶ Edit Wikipedia
▶ Use advertisement or VC money

5

WMF: what it does

▶ Owns the wikipedia.org domain
▶ Raises money through donations
▶ Controls the servers (19 Site Reliability Engineers)
▶ Develops and deploys software (66 SWE)

6

Alexa Top Websites

Company Revenue Employees Server count
Google $89.4 billion 73,992 2,000,000+
Facebook $40.6 billion 25,105 180,000+
Baidu $13.4 billion 46,391 100,000+
Wikimedia $81.9 million 304 1,000+
Yahoo $1.31 billion 8,500 100,000+

7

Traffic Volume

▶ Average: ~100k/s, peaks: ~140k/s
▶ Can handle more for huge-scale DDoS attacks

8

DDoS Example

Source: jimieye from flickr.com (CC BY 2.0)

9

The Wikimedia Family

10

Values

▶ Deeply rooted in the free culture and free software
movements

▶ Infrastructure built exclusively with free and
open-source components

▶ Design and build in the open, together with
volunteers

11

Build In The Open

▶ github.com/wikimedia
▶ gerrit.wikimedia.org
▶ phabricator.wikimedia.org
▶ grafana.wikimedia.org

12

CDN Ingredients

13

How does Wikipedia end up on my
screen?

14

15

Thank you! Any questions?

16

CDN Ingredients

▶ HTTP Caching
▶ Load balancing

17

Caching proxies

Reduce application server load
by caching HTTP responses

18

19

20

The devil is in the detail

The cache receives multiple requests for the same page
before receiving a response from the server.

What should it do?

21

22

23

The devil is in the detail

How about your bank account!

24

25

26

Response headers

Cache-Control: private
▶ The response is intended for a single user
▶ Shared caches must not store it

27

28

29

Paper: Hypertext Transfer Protocol
(HTTP/1.1): Caching

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
Ed.,

Hypertext Transfer Protocol (HTTP/1.1): Caching

RFC 7234, June 2014.

30

Load balancing

▶ One caching proxy is of course not enough
▶ Scalability
▶ High Availability

▶ We need to deploy multiple cache servers
▶ Traffic should be distributed among them somehow

evenly

31

Load balancing

32

Load balancing

▶ Load balancers can work at different layers of the
networking stack

▶ L4: backend selection based on layer 3/4
information

▶ L7: backend selection based on (guess what) layer 7
information

33

Load balancing: backend selection

L7 HTTP load balancer
We want all requests for the document /foobar to end
up on a given cache proxy

34

Load balancing: backend selection

▶ Hash the request url!
▶ In traditional hash tables, mapping is defined by a

modular operation
▶ Changing the number of slots causes nearly all keys

to be remapped
▶ What happens if servers come and go?

35

Paper: Consistent Hashing

Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin,
D., and Panigrahy, R.

Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World
Wide Web.

In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (El Paso, TX, May 1997)

36

Consistent Hashing

▶ Map each object to a point on a circle
▶ Map each bucket to many pseudo-random points on

the circle
▶ To find an object’s bucket, find the object on the

circle, and walk clockwise till you find the bucket

37

Blue: 1, 5
Red: 2, 4
Green: 3

38

Consistent Hashing

▶ If we remove a bucket, the items that mapped to it
must be redistributed among the remaining ones

▶ Values mapping to other buckets will still do so and
do not need to be moved

39

Red: 2, 4 -> Red: 2, 4, 1, 5
Green: 3 -> Green: 3

40

A day in the life of an
HTTP request

41

A day in the life of an HTTP request

▶ Geographic DNS Routing
▶ L4 Load Balancing
▶ TCP connection establishment
▶ TLS Termination
▶ HTTP Caching
▶ L7 Load Balancing

42

Geographic DNS routing

We get sent to the closest data centre

43

Cluster Map

eqiad: Ashburn, Virginia - cp10xx
codfw: Dallas, Texas - cp20xx
esams: Amsterdam, Netherlands - cp30xx
ulsfo: San Francisco, California - cp40xx
eqsin: Singapore - cp50xx

44

Cache cluster

▶ Load balancers running Linux Virtual Server
▶ HTTP cache proxies running Varnish in memory

(faster, smaller)
▶ HTTP cache proxies running Varnish on disk

(slower, much larger)

46

47

▶ L4 load balancing, backend selection based on IP
▶ Effective cache size: ~avg(mem size)

48

TCP Connection Establishment

▶ SYN
▶ SYN/ACK
▶ ACK

49

Paper: TCP Fast Open

S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B.
Raghavan.

TCP Fast Open.

In Proc. of the International Conference on emerging
Networking EXperiments and Technologies (CoNEXT),
2011.

50

TCP Fast Open

▶ Speed of light cannot be changed
▶ The number of roundtrips can
▶ Allow SYN packets to carry data
▶ Cookie used to authenticate client

51

52

53

Cache miss
▶ L7 load balancing, backend selection based on request URL▶ Effective cache size: ~sum(disk size) 54

Cache hit 55

56

Load balancing: direct routing

▶ All requests go through the load balancer
▶ Responses go straight to the client

57

Load balancing: direct routing

That’s a particularly smart idea for HTTP traffic.
58

Paper: Linux Virtual Server

W. Zhang.

Linux Virtual Server for Scalable Network Services.

In Proceedings of the Linux Symposium, July 2000.

59

Conclusions: you know more things

▶ Wikipedia is one of the largest websites in the world
▶ It is run by a non-profit called Wikimedia

Foundation
▶ HTTP Caching
▶ L4/L7 Load Balancing
▶ Consistent Hashing
▶ Geographic DNS Routing
▶ TCP Fast Open
▶ LVS Direct Routing

60

The devil is in the detail

Request coalescing with uncacheable responses

61

62

63

64

	Wikimedia Foundation
	CDN Ingredients
	A day in the life of an HTTP request

