
Serving Wikipedia with ATS
ATS Summit Sunnyvale, California

Emanuele Rocca
Site Reliability Engineer @ WMF

October 8th 2019
1



Traffic Server is now being used to serve
Wikipedia

1



Outline

▶ Introduction to Wikimedia Foundation
▶ Old CDN Architecture with Varnish
▶ New CDN Architecture with ATS
▶ Work done
▶ Conclusions

2



Wikimedia Foundation

3



Wikimedia Foundation

▶ Non-profit organization focusing on free,
open-content, wiki-based Internet projects

▶ No ads, no VC money
▶ Entirely funded by small donors
▶ 350 employees (of which 33 SRE and 80 SWE)

4



The Wikimedia Family

5



Why our own CDN?

▶ Autonomy
▶ Privacy
▶ Risk of censorship

6



Traffic Volume

▶ Average: ~100k rps, peaks: ~140k rps
▶ Can handle more for large-scale DDoS attacks

7



DDoS Example

Source: jimieye from flickr.com (CC BY 2.0)

8



Values

▶ Deeply rooted in the free culture and free software
movements

▶ Infrastructure built exclusively with free and
open-source components

▶ Design and build in the open, together with
volunteers

9



Build In The Open

▶ github.com/wikimedia
▶ gerrit.wikimedia.org
▶ phabricator.wikimedia.org
▶ wikitech.wikimedia.org
▶ grafana.wikimedia.org

10



Cluster Map

eqiad: Ashburn, Virginia - cp10xx
codfw: Dallas, Texas - cp20xx
esams: Amsterdam, Netherlands - cp30xx
ulsfo: San Francisco, California - cp40xx
eqsin: Singapore - cp50xx

11



A day in the life of an HTTP request

▶ Geographic DNS Routing
▶ L4 Load Balancing
▶ TCP connection establishment
▶ TLS Termination
▶ HTTP Caching
▶ L7 Load Balancing

12





Old CDN (Varnish)

14



Load balancers and cache servers

▶ Load balancers running Linux Virtual Server
▶ HTTP cache proxies running two Varnish instances

per server
▶ In-memory: faster, smaller. Effective cache size:

~avg(total mem size)
▶ On-disk: slower, much larger. Effective cache size:

~sum(total disk size)

15



Load balancing

▶ All requests go through the load balancer
▶ Responses go straight to the client

16



Load balancing: direct routing

17



18



19



20



Inter-DC Traffic

▶ Encryption between data centers necessary
▶ IPsec between cache servers
▶ Minimal hitrate on ”remote DCs”
▶ Architectural constraints due to Varnish not

supporting outgoing TLS

21



Problems with Varnish

▶ Bad scalability issues with the ”file” storage backend
▶ No TLS support whatsoever, neither incoming nor

outgoing
▶ Open-core business model, crucial features made

proprietary

22



New CDN (ATS)

23



ATS Sandwich

▶ In the process of replacing Nginx with ATS for TLS
termination

▶ Work done by my colleague Valentín Gutierrez
▶ This presentation focuses on large on-disk caches

instead

24



25



Simpler architecture

▶ IPsec removed entirely thanks to outbound TLS
support in ATS

▶ No need for caches to be aware of those in other
DCs

▶ Saving primary DC caches lots of requests
▶ No need to change inter-DC routing when

depooling a site

26



Upload cache cluster

▶ Multimedia files, OpenStack Swift
▶ 42 servers
▶ 45k rps
▶ Fully converted to ATS

27



Issues found during transition

▶ Segmentation fault in verify_config #4466
▶ RAM cache usage growth #5179
▶ Segmentation fault due to compress plugin #5787
▶ FIFO logfile removed on configuration reload #4635

Detailed transition info:
https://phabricator.wikimedia.org/T213263

28

https://phabricator.wikimedia.org/T213263


Text cache cluster

▶ Primary wiki traffic
▶ 36 servers
▶ 100k rps
▶ ATS on one of those for production traffic testing
▶ Converting the remaining 35 this quarter!

29



Work done

30



Debian Packaging

▶ 8.x packages backported to Debian Stretch. GCC in
Stretch does not support C++17, using Clang
instead

▶ Upgrading CDN nodes to Buster soon, switching
back to GCC

▶ Now co-maintaining official Debian packages with
Jean Baptiste Favre and Aron Xu

31



Puppet

▶ Remap rules
▶ Caching rules
▶ Storage
▶ Logging
▶ Multi-instance support with traffic_layout

https://github.com/wikimedia/puppet

32

https://github.com/wikimedia/puppet


Lua

~700 lines of custom Lua code, of which ~350 are tests

▶ Per-remap scripts calling ts.hook()
▶ MediaWiki request mangling
▶ Path normalization, RFC 3986 section 6

▶ Default code calling do_global_
▶ X-Cache response header
▶ Force caching
▶ Avoid caching

33



34



Cacheability

▶ Initially used heuristics and Negative Response
Caching

▶ Finally decided to require explicit Cache-Control
instead

▶ Unset Cache-Control in do_global_read_response
for what we consider uncacheable, set it for
negative responses we want to cache

▶ Restore the original CC value in
TS_LUA_HOOK_SEND_RESPONSE_HDR

35



Does server permit storing?

▶ Wrote a SystemTap probe to inspect
cache/no-cache decisions

▶ Instrument is_response_cacheable
▶ Print request details unless

does_server_permit_storing

36



Origin server connection establishment
probe process("/usr/bin/traffic_server").statement(

"state_http_server_open@./proxy/http/HttpSM.cc:1718")
{

server_name = user_string_n(
$this ->t_state ->current ->server ->name, 128)

t = &$this ->t_state ->txn_conf

printf("%s %d\n",
server_name , t->origin_max_connections)

}

appservers-rw.discovery.wmnet 0
swift.discovery.wmnet 0

37



Logging

▶ Logging to named pipe
▶ Golang program called fifo-log-demux reading from

the pipe
▶ Multiple clients connecting via Unix domain socket
▶ Client program called atslog to inspect logs at

runtime
▶ Issues:

▶ FIFO logfile removed on configuration reload #4635
▶ Error messages logged if there is no reader

38



Prometheus integration

▶ prometheus-trafficserver-exporter for all stock
trafficserver metrics

▶ Valentin and I maintain the package in Debian
▶ atsbackend.mtail exposing ttfb on a per-origin basis
▶ atsmtail.service boiling down to atslog | mtail

39



Grafana

40



Thundering herd avoidance

▶ Tried collapsed forwarding, decided to go for read
while writer instead

▶ Conservatively returned 502 upon coalesce timeout
expiration (failure to obtain cache open write lock)
for a few months. Failing open now

▶ Optimal value for max_open_write_retries
identified instrumenting state_cache_open_write
with SystemTap

▶ How to avoid stalling on uncacheable responses?

41



Much more!

▶ Read-Only /etc #2505
▶ Systemd unit hardening

https://phabricator.wikimedia.org/T200178
▶ Icinga checks

https://phabricator.wikimedia.org/T204209

42

https://phabricator.wikimedia.org/T200178
https://phabricator.wikimedia.org/T204209


Conclusions

43



Positives

▶ Persistent storage
▶ TLS
▶ Lua
▶ Community! We would like to collaborate even more

44



Conclusions

▶ Wikipedia moving from Varnish and nginx to ATS
▶ Currently converting all on-disk caches and TLS

terminators
▶ Big plans for the future!

45


	Wikimedia Foundation
	Old CDN (Varnish)
	New CDN (ATS)
	Work Done
	Conclusions

